Những câu hỏi liên quan
DK
Xem chi tiết
HH
27 tháng 7 2017 lúc 15:31

Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)\(\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)

Với \(x=2y\Rightarrow A=\frac{3.2y+2y}{3.2y-2y}=\frac{8y}{4y}=2\)

Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3.\frac{2}{9}y+2y}{3.\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)

Bình luận (0)
DC
30 tháng 7 2017 lúc 18:17

Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)

Với \(x=2y\Rightarrow A=\frac{3\cdot2y+2y}{3\cdot2y-2y}=\frac{8y}{4y}=2\)

Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3\cdot\frac{2}{9}y+2y}{3\cdot\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)

Bình luận (0)
BM
Xem chi tiết
BB
Xem chi tiết
NT
16 tháng 12 2020 lúc 20:11

Ta có: \(A^2=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}\)

\(=\dfrac{9x^2+4x^2-12xy}{9x^2+4x^2+12xy}\)

\(=\dfrac{20xy-12xy}{20x^2+12xy}\)

\(=\dfrac{8xy}{32xy}=\dfrac{1}{4}\)

\(\Leftrightarrow A\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)(1)

Vì 2y<3x<0 nên 3x-2y>0 và 3x+2y<0

hay \(A=\dfrac{3x-2y}{3x+2y}< 0\)(2)

Từ (1) và (2) suy ra \(A=-\dfrac{1}{2}\)

Vậy: \(A=-\dfrac{1}{2}\)

Bình luận (0)
TA
Xem chi tiết
ST
18 tháng 7 2018 lúc 9:29

Ta có: \(9x^2+4y^2=20xy\Leftrightarrow9x^2-12xy+4y^2=8xy\Leftrightarrow\left(3x-2y\right)^2=8xy\) (1)

Mặt khác: \(9x^2+4y^2=20xy\Leftrightarrow9x^2+12xy+4y^2=32xy\Leftrightarrow\left(3x+2y\right)^2=32xy\) (2)

Từ (1) và (2) => \(\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}\Leftrightarrow\left(\frac{3x-2y}{3x+2y}\right)^2=\frac{1}{4}\Leftrightarrow\frac{3x-2y}{3x+2y}=\pm\frac{1}{2}\)

Mà \(2y< 3x< 0\Rightarrow A=\frac{3x-2y}{3x+2y}=\frac{-1}{2}\)

Bình luận (0)
LN
Xem chi tiết
DQ
10 tháng 1 2021 lúc 10:55

Ta có: \(A^2=\frac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}=\frac{20xy-12xy}{20xy+12xy}=\frac{8xy}{32xy}=\frac{1}{4}\)

Vì \(2y< 3x< 0\Rightarrow3x-2y>0,3x+2y< 0\Rightarrow A< 0\)

Vậy A= \(\frac{-1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
10 tháng 1 2021 lúc 11:07

Ta có :

\(A^2=\frac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}\)\(=\frac{20xy-12xy}{20xy+12xy}\)\(=\frac{8xy}{32xy}\)\(=\frac{1}{4}\)

\(Do\)\(2y< 3x< 0\Rightarrow3x-2y>0;3x+2y< 0\Rightarrow A< 0\)

Vậy \(A=-\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
NT
Xem chi tiết
CT
31 tháng 8 2017 lúc 19:36

Ta có \(9x^2+4y^2=20xy\Leftrightarrow9x^2+2.3x.2y+4y^2=8xy\Leftrightarrow\left(3x+2y\right)^2=8xy\)\(32xy\)

Mặt khác \(9x^2+4y^2=20xy\Leftrightarrow9x^2-2.3x.2y+4y^2=8xy\Leftrightarrow\left(3x-2y\right)^2=8xy\)

\(\Rightarrow\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}=\frac{1}{4}\)\(\Leftrightarrow\left(\frac{3x-2y}{3x+2y}\right)^2=\frac{1}{4}\Leftrightarrow\frac{3x-2y}{3x+2y}=+-\frac{1}{2}\)

Do \(2y< 3x< 0\Rightarrow A=-\frac{1}{2}\)

Bình luận (0)
NN
Xem chi tiết
NN
5 tháng 3 2016 lúc 21:35

ta có 

9x2+12xy+4y2=32xy

=>(3x+2y)2=32xy =>3x+2y=\(\sqrt{32xy}\)

mặt khác

9x2-12xy+4y2=8xy

=>(3x-2y)2=8xy  =>3x-2y=\(\sqrt{8xy}\)

vậy \(\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}\)

=0,5

Bình luận (0)
NN
5 tháng 3 2016 lúc 21:42

đề này có trong violimpic vòng 15

hôm qua mình đi thi có gặp bài này ko bt sai hay đúng nữa

mà hình như mình làm sai dấu

Bình luận (0)
FF
Xem chi tiết
HS
14 tháng 7 2018 lúc 21:17

Ta có : b,  \((3x-2y)^2=9x^2-12xy+4y^2=20xy-12xy=8xy\)

\(\Rightarrow3x-2y=\sqrt{8xy}\)                             \((1)\)

\((3x+2y)^2=9x^2+12xy+4y^2=20xy+12xy=32xy\)

\(\Rightarrow3x+2y=\sqrt{32xy}\)                             \((2)\)

Từ \((1)\) và      \((2)\), suy ra :

\(\Rightarrow\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=0,5\)

Bình luận (0)