1^3+2^3+3^3+...+100^3/1×5+2×8+3×11+...+100×302 rút gọn ps
rút gọn B=1/2^2+1/2^3+....+1/2^100
B=1/22+1/23+...+1/2100
2B=1/21+1/22+...1/299
2B-B=(1/21+1/22+...+1/299)-(1/22+1/23+...+1/2100)
B=1/21-1/2100=299/2100-1/2100=299-1/2100
5/3+8/3^2 + 11/3^3+…+ 302/3^100
C=(5/3)+(8/3^2)+(11/3^3)+...+(302/3^100)
CMR: (2 và 5/9)<C<(3 và 1/2)
Làm cho mình nhanh nha
Rút gọn : a) M = \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
b) N = \(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
a)M=2100-299+298-...+22-2
22M=2102-2101+2100-...+22-2
4M-M=2102-2101+2100-...+22-2-2100+299-...-22+2
3M=2102-2101
M=\(\frac{2^{102}-2^{101}}{3}\)
Rút gọn;
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{101}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{101}}\)
\(\Rightarrow A=\frac{2^{101}-1}{2^{101}}\)
Cho G= \(\frac{5}{3}+\frac{8}{3^2}+\frac{11}{3^3}+\frac{302}{3^{100}}\)
CMR \(2\frac{5}{9}< G< 3\frac{1}{2}\)
tính
a=100+98+96+.....+2-97-95-93-.....-1
b=1+2-3-3=5+6-7-8+9+10-11-12+.......-299-300+301+302
Ta có:
A = 100 + 98 + 96 + .........+ 2 - 97 - 95 - 93 -...- 1
<=> 100 + 98 + 96 + ... + 2 - (97+ 95 + 93 + ... + 1)
<=> 50 x (100 + 2) : 2 - 33 x (97+1) : 2
<=> 2550 - 1617
<=> 933
S=1+2-3-4+5+6-7-8+9+10-11-12+13+14...-299-100+301+302
chứng minh: 23/19 < 5/3 + 8/32 + 11/33 + ...+ 302/3100 < 7/2
mink đg cần gấp mai phải nộp bài rùi !!!