Tìm giá trị của x,y,z sao cho :
3x=2y:7y=5z ;x-y+z=32
Làm giúp mk lẹ nha, mk cảm ơn trc
Cho x,y,z lớn hơn hoặc bằng 0, 2x+7y=2014 và 3x+5z=3031. Tìm giá trị lớn nhất của biểu thức A= x+y+z
Cộng hai vế ta được: 5(x+y+z)+2y=5045
Để 5(x+y+z) lớn nhất thì 2y nhỏ nhất
Mà 2y lớn hơn hoặc bằng 0 nên 2ymin=0
=> 5(x+y+z)max=5045=> A=x+y+z=5045 <=> y=0 => x=1012 => z=-1
tìm giá trị của x,y,z biết 3x=2y; 7y=5z và x-y+z=32
Câu hỏi của gv - Toán lớp 0 | Học trực tuyến
Bạn tham khảo nhé! Học tốt!
Ta có
3x = 2y => \(\frac{x}{2}=\frac{y}{3}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\)
Vì 2 bên y không cùng mẫu nên cần tìm BCNN của (3;5) = 15
Từ đó ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)và x - y + z = 32
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
Vậy x = 20
y = 30
z = 42
Cho 3 số x;y;z thõa mãn 3x =2y, 7y = 5z và x+z-y = 32 . Tìm x+y-z
\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{26}=\frac{16}{13}=\frac{x+y-z}{10+15-21}\)
\(\Rightarrow x+y-z=\frac{16}{13}\cdot4=\frac{64}{13}\)
Theo bài ra ta có: x + z - y = 32
\(\Rightarrow\hept{\begin{cases}3x=2y\Rightarrow21x=14y\\7y=5z\Rightarrow14y=10z\end{cases}\Rightarrow21x=14y=10z}\)\(\Rightarrow\frac{x}{\frac{1}{21}}=\frac{y}{\frac{1}{14}}=\frac{z}{\frac{1}{10}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{21}}=\frac{y}{\frac{1}{14}}=\frac{z}{\frac{1}{10}}=\frac{x+z-y}{\frac{1}{21}+\frac{1}{10}-\frac{1}{14}}=\frac{32}{\frac{8}{105}}=420\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{21}}=420\Rightarrow x=420\cdot\frac{1}{21}=20\\\frac{y}{\frac{1}{14}}=420\Rightarrow y=420\cdot\frac{1}{14}=30\\\frac{z}{\frac{1}{10}}=420\Rightarrow z=420\cdot\frac{1}{10}=42\end{cases}}\)
=> x + y - z = 20 + 30 - 42 = 8
3x = 2y ; 7y = 5z và x-y+z = 32. Tìm x; y ; z
3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra x/10=2 => x=20
y/15=2 =>y=30
z/21=2 => z=42
tìm x,y,z biết :3x=2y,7y=5z và x-y+z=32
3x = 2y => x/2 = y/3 => x/10 = y/15 (1)
7y = 5z => y/5 = z/7 => y/15 = z/21 (2)
Từ (1) và (2) => x/10 = y/15 = z/21
Áp dụng tình chất của dãy tỉ số bằng nhau:
(tự làm nha)
Tìm x, y, z:
3x = 2y; 7y = 5z và x - y + 2z = -111
\(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15};7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\\ \Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+2z}{10-15+42}=\dfrac{-111}{37}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-30\\y=-45\\z=-63\end{matrix}\right.\)
tìm x, y ,z biết 3x=2y, 7y=5z và x-y+z= 32
Tìm x;y;z biết:
3x = 2y; 7y =5z và x - y + z = 32
Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42
3x = 2y => x = (2/3)y (1)
7y = 5z => z =(7/5)y (2)
thay (1) và (2) vào x - y + z = 32 ta được :
(2/3)y - y + (7/5)y = 32
=> (2/3 -1 + 7/5)y = 32
=> (16/15)y = 32
=> y = 30
thay y = 30 vào (1) và (2) ta được x = 20 và z = 42
kl: x = 20 , y = 30 ,z = 42
tìm các số x,y,z biết; 3x=2y; 7y=5z; và x-y+z=32
Ta có \(3x=2y\) \(\Rightarrow3x\times\frac{7}{2}=2y\times\frac{7}{2}\) \(\Rightarrow\frac{21}{2}x=7y\)
\(\Rightarrow\frac{21}{2}x=7y=5z\)
\(\Rightarrow\frac{x}{\frac{2}{21}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{2}{21}-\frac{1}{7}+\frac{1}{5}}=\frac{32}{\frac{16}{105}}=210\) (tính chất dãy các tỉ số bằng nhau)
\(\Rightarrow\frac{x}{\frac{2}{21}}=210\Rightarrow x=210\times\frac{2}{21}=20\)
và \(\frac{y}{\frac{1}{7}}=210\Rightarrow y=210\times\frac{1}{7}=30\)
và \(\frac{z}{\frac{1}{5}}=210\Rightarrow z=210\times\frac{1}{5}=42\)