Những câu hỏi liên quan
PT
Xem chi tiết
MD
15 tháng 2 2017 lúc 20:50

Có 7a=9b=21c

\(\Rightarrow\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}\)Như thế này bạn làm dk chưa

Bình luận (0)
NN
13 tháng 2 2017 lúc 19:56

(a+b-c)^2=1521 nhé bn!!

Mik làm r. mình nha <3

Bình luận (0)
MD
15 tháng 2 2017 lúc 20:52

Kết quả cũng bằng 1521 giống Nguyễn Vũ Yến Nhi

Bình luận (0)
MK
Xem chi tiết
VT
2 tháng 3 2017 lúc 21:41

=>a/7=b/9=>a/7=7b/63=>a/49=b/63

=>b/21=c/9=>3b/63=c/9=>b/63=c/27

ta có:a/49=b/63=c/27

áp dụng tính chất của dãy các tỉ số bằng nhau ......tự làm nhé

Bình luận (0)
QN
Xem chi tiết
NP
11 tháng 2 2017 lúc 11:00

Theo đề bài, ta có:

\(7a=9b=21c\)

\(\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\)

\(\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau và kết hợp với điều kiện \(a-b+c=15\), ta có:

\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{15}{5}=3\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{9}=3\\\frac{b}{7}=3\\\frac{c}{3}=3\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=3\times9\\b=3\times7\\c=3\times3\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=27\\b=21\\c=9\end{matrix}\right.\)

Với \(a=27\), \(b=21\)\(c=9\)

thì \(\left(a+b-c\right)^2=\left(27+21-9\right)^2=39^2=1521\)

Vậy khi đó, \(\left(a+b-c\right)^2=1521\).

Bình luận (1)
TH
11 tháng 2 2017 lúc 13:09

Từ 7a=9b=21c\(\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{15}{5}=3\)

\(\Rightarrow\left\{\begin{matrix}a=27\\b=21\\c=9\end{matrix}\right.\)

\(\Rightarrow\left(a+b-c\right)^2=\left(27+21-9\right)^2=1521\)

Vậy \(\left(a+b-c\right)^2=1521\)

Bình luận (1)
PT
11 tháng 2 2017 lúc 10:07

sai đề r

Bình luận (0)
KN
Xem chi tiết
LH
12 tháng 11 2017 lúc 19:49

Theo đề bài ta có:

\(7a=9b=21c\Rightarrow\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\)\(ab+c=-15\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1} {9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)

\(\dfrac{a}{\dfrac{1}{7}}=-189\Rightarrow a=-189.\dfrac{1}{7}=-27\)

\(\dfrac{b}{\dfrac{1}{9}}=-189\Rightarrow b=-189.\dfrac{1}{9}=-21\)

\(\dfrac{c}{\dfrac{1}{21}}=-189\Rightarrow c=-189.\dfrac{1}{21}=-9\)

Vậy..

Bình luận (0)
NN
12 tháng 11 2017 lúc 10:53

Theo đề bài ta có:

\(7a=9b=21c\Rightarrow\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\)\(a-b+c=-15\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)

\(\dfrac{a}{\dfrac{1}{7}}=-189\Rightarrow a=-189.\dfrac{1}{7}=-27\)

\(\dfrac{b}{\dfrac{1}{9}}=-189\Rightarrow b=-189.\dfrac{1}{9}=-21\)

\(\dfrac{c}{\dfrac{1}{21}}=-189\Rightarrow c=-189.\dfrac{1}{21}=-9\)

Vậy...........................

Bình luận (0)
H24
Xem chi tiết
DT
22 tháng 3 2020 lúc 10:14

\(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Leftrightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{-15}{5}=-3\)

\(\Leftrightarrow\frac{a}{9}=-3\Rightarrow a=-27\)

        \(\frac{b}{7}=-3\Rightarrow b=-21\)

         \(\frac{c}{3}=-3\Rightarrow c=-9\)

      \(\Rightarrow a+b+c=-27-21-9=-57\)

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
NT
26 tháng 7 2021 lúc 12:02

a, Ta có: \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau 

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{15}=\frac{3a-7b+5c}{63-98+75}=\frac{30}{40}=\frac{3}{4}\)

\(a=\frac{63}{4};b=\frac{42}{4};c=\frac{45}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
26 tháng 7 2021 lúc 12:04

b, Ta có : \(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau 

\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=-\frac{15}{5}=-3\Rightarrow a=-27;b=-21;c=-9\)

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
DN
Xem chi tiết
MV
29 tháng 10 2017 lúc 13:49

1.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(7a=9b=21c=\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{15}{\dfrac{5}{63}}=15\cdot\dfrac{63}{5}=189\\ \Rightarrow\left\{{}\begin{matrix}7a=189\\9b=189\\21c=189\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=189:7\\b=189:9\\c=189:21\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=27\\b=21\\c=9\end{matrix}\right.\)

2.

\(b^2=ac\Rightarrow\dfrac{b}{c}=\dfrac{a}{b}\)

\(\dfrac{b}{c}=\dfrac{a}{b}=k\Rightarrow b=ck;a=bk\)

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{b^2k^2+c^2k^2}{b^2+c^2}=\dfrac{k^2\left(b^2+c^2\right)}{b^2+c^2}=k^2\\ \dfrac{a}{c}=\dfrac{bk}{c}=\dfrac{ck\cdot k}{c}=k^2\\ \Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

Bình luận (2)
TH
29 tháng 10 2017 lúc 14:33

Câu 2:

Ta có:

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

\(\RightarrowĐPCM\)

Bình luận (0)
TH
29 tháng 10 2017 lúc 14:38

Câu 1:

7a = 9b = 21c

\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{9}=\dfrac{c}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{21}=\dfrac{b}{9}=\dfrac{c}{7}=\dfrac{a-b+c}{21-9+7}=\dfrac{-15}{19}\)

\(\Rightarrow\left\{{}\begin{matrix}a=-15:19.21\\b=-15:19.9\\c=-15:19.7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-16\dfrac{11}{19}\\b=-7\dfrac{2}{19}\\c=-5\dfrac{10}{19}\end{matrix}\right.\)

Bình luận (1)
NT
Xem chi tiết
SC
30 tháng 7 2017 lúc 17:09

a/ \(\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14};\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\Rightarrow\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}\)

Áp dụng t/c của dãy tỉ số = nhau có:

\(\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{2\cdot63}{3}=42\\b=\dfrac{2\cdot98}{7}=28\\c=\dfrac{2\cdot50}{5}=20\end{matrix}\right.\)

Vậy....................

b/ 7a = 9b = 21c => \(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\)

và a - b + c = -15

Áp dụng tccdts = nhau ta có:

\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)

=> \(\left\{{}\begin{matrix}a=-189\cdot\dfrac{1}{7}=-27\\b=-189\cdot\dfrac{1}{9}=-21\\c=-189\cdot\dfrac{1}{21}=-9\end{matrix}\right.\)

Vậy............

Bình luận (0)
ND
30 tháng 7 2017 lúc 16:31

Dựa theo t/c dãy tỉ số bằng nhau mà làm :VV

Bình luận (0)