7a=9b=21c và a-b+c=15. Khi đó (a+b-c)2=...
Cho 7a = 9b = 21c và a-b+c = 15. Khi đó (a+b-c)2 =
Có 7a=9b=21c
\(\Rightarrow\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}\)Như thế này bạn làm dk chưa
(a+b-c)^2=1521 nhé bn!!
Mik làm r. mình nha <3
Kết quả cũng bằng 1521 giống Nguyễn Vũ Yến Nhi
Cho 7a = 9b = 21c và a - b + c = 15. Khi đó (a + b - c)2 =...
=>a/7=b/9=>a/7=7b/63=>a/49=b/63
=>b/21=c/9=>3b/63=c/9=>b/63=c/27
ta có:a/49=b/63=c/27
áp dụng tính chất của dãy các tỉ số bằng nhau ......tự làm nhé
Cho 7a = 9b =21c và a - b + c = 15. Khi đó, (a + b - c)2 = _____
Theo đề bài, ta có:
\(7a=9b=21c\)
\(\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\)
\(\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau và kết hợp với điều kiện \(a-b+c=15\), ta có:
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{15}{5}=3\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{9}=3\\\frac{b}{7}=3\\\frac{c}{3}=3\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=3\times9\\b=3\times7\\c=3\times3\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=27\\b=21\\c=9\end{matrix}\right.\)
Với \(a=27\), \(b=21\) và \(c=9\)
thì \(\left(a+b-c\right)^2=\left(27+21-9\right)^2=39^2=1521\)
Vậy khi đó, \(\left(a+b-c\right)^2=1521\).
Từ 7a=9b=21c\(\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{15}{5}=3\)
\(\Rightarrow\left\{\begin{matrix}a=27\\b=21\\c=9\end{matrix}\right.\)
\(\Rightarrow\left(a+b-c\right)^2=\left(27+21-9\right)^2=1521\)
Vậy \(\left(a+b-c\right)^2=1521\)
7a = 9b =21c và a-b+c= -15. Tính a,b,c
Theo đề bài ta có:
\(7a=9b=21c\Rightarrow\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\) và \(ab+c=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1} {9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)
\(\dfrac{a}{\dfrac{1}{7}}=-189\Rightarrow a=-189.\dfrac{1}{7}=-27\)
\(\dfrac{b}{\dfrac{1}{9}}=-189\Rightarrow b=-189.\dfrac{1}{9}=-21\)
\(\dfrac{c}{\dfrac{1}{21}}=-189\Rightarrow c=-189.\dfrac{1}{21}=-9\)
Vậy..
Theo đề bài ta có:
\(7a=9b=21c\Rightarrow\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\) và \(a-b+c=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)
\(\dfrac{a}{\dfrac{1}{7}}=-189\Rightarrow a=-189.\dfrac{1}{7}=-27\)
\(\dfrac{b}{\dfrac{1}{9}}=-189\Rightarrow b=-189.\dfrac{1}{9}=-21\)
\(\dfrac{c}{\dfrac{1}{21}}=-189\Rightarrow c=-189.\dfrac{1}{21}=-9\)
Vậy...........................
Cho các số a,b,c thỏa mãn 7a=9b=21c và a-b+c=-15.Khi đó a+b+c bằng :
A.19
B.15
C.-57
D.57
\(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Leftrightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{-15}{5}=-3\)
\(\Leftrightarrow\frac{a}{9}=-3\Rightarrow a=-27\)
\(\frac{b}{7}=-3\Rightarrow b=-21\)
\(\frac{c}{3}=-3\Rightarrow c=-9\)
\(\Rightarrow a+b+c=-27-21-9=-57\)
Tìm các số a, b, c biết rằng: a) a/ 3 = b/ 2 , b/ 7 = c /5 và 3a – 7b + 5c = 30 b) 7a = 9b = 21c và a – b + c = – 15
a, Ta có: \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{15}=\frac{3a-7b+5c}{63-98+75}=\frac{30}{40}=\frac{3}{4}\)
\(a=\frac{63}{4};b=\frac{42}{4};c=\frac{45}{4}\)
b, Ta có : \(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=-\frac{15}{5}=-3\Rightarrow a=-27;b=-21;c=-9\)
Tìm các số a, b, c biết rằng: a) a 3 = b 2 , b 7 = c 5 và 3a – 7b + 5c = 30 b) 7a = 9b = 21c và a – b + c = – 15
Câu 1: Tìm a,b,c biết:
7a = 9b = 21c và a - b + c = -15
Câu 2: Cho b\(^2\) = a.c Chứng minh rằng \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
1.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(7a=9b=21c=\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{15}{\dfrac{5}{63}}=15\cdot\dfrac{63}{5}=189\\ \Rightarrow\left\{{}\begin{matrix}7a=189\\9b=189\\21c=189\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=189:7\\b=189:9\\c=189:21\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=27\\b=21\\c=9\end{matrix}\right.\)
2.
\(b^2=ac\Rightarrow\dfrac{b}{c}=\dfrac{a}{b}\)
\(\dfrac{b}{c}=\dfrac{a}{b}=k\Rightarrow b=ck;a=bk\)
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{b^2k^2+c^2k^2}{b^2+c^2}=\dfrac{k^2\left(b^2+c^2\right)}{b^2+c^2}=k^2\\ \dfrac{a}{c}=\dfrac{bk}{c}=\dfrac{ck\cdot k}{c}=k^2\\ \Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Câu 2:
Ta có:
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
\(\RightarrowĐPCM\)
Câu 1:
7a = 9b = 21c
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{9}=\dfrac{c}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{21}=\dfrac{b}{9}=\dfrac{c}{7}=\dfrac{a-b+c}{21-9+7}=\dfrac{-15}{19}\)
\(\Rightarrow\left\{{}\begin{matrix}a=-15:19.21\\b=-15:19.9\\c=-15:19.7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-16\dfrac{11}{19}\\b=-7\dfrac{2}{19}\\c=-5\dfrac{10}{19}\end{matrix}\right.\)
Bài 1 Tìm a;b;c biết
a) \(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\) và 3a-7b+5c=30
b) 7a=9a=21c và a-b+c=-15
a/ \(\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14};\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\Rightarrow\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}\)
Áp dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{2\cdot63}{3}=42\\b=\dfrac{2\cdot98}{7}=28\\c=\dfrac{2\cdot50}{5}=20\end{matrix}\right.\)
Vậy....................
b/ 7a = 9b = 21c => \(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\)
và a - b + c = -15
Áp dụng tccdts = nhau ta có:
\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)
=> \(\left\{{}\begin{matrix}a=-189\cdot\dfrac{1}{7}=-27\\b=-189\cdot\dfrac{1}{9}=-21\\c=-189\cdot\dfrac{1}{21}=-9\end{matrix}\right.\)
Vậy............
Dựa theo t/c dãy tỉ số bằng nhau mà làm :VV