4x^4+12x^2y^2+9y^4:2x^2+3y^2
làm tính chia (4x^4+12x^2y^2+9y^4):(2x^2+3y^2)
(4x⁴ + 12x²y² + 9y⁴) : (2x² + 3y²)
= (2x² + 3y²)² : (2x² + 3y²)
= 2x² + 3y²
Tính
1(3x-5y).(3x+5y)
2(2x-3y).(4x^2+6xy+9y^2)
3(4x+3y).(16x^2-12xy+9y^2)
4)8x^3+12x^2+6x+1
5)27x^3+54x^2y+36xy^2+8y^3
C=3x^2y-2xy^2+x^3y^3+3xy^2-2^2y-2x^3y^3
D=15x^2y^3+7y^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3
E=3x^5+1/3xy^4+3/4x^2y^3-1/2x^5y+2xy^4-x^2y^3
tìm bậc
Các bạn cho mk hỏi
1) Cho 4x-3x =2 . Tính M =12x - 9x +5
2) Cho x+y =10 .Tính P = 2x+3y+5x+2y+8
3) Cho 4x-3y=2 . Tính M = 12x-9y+5
Phân tích các đa thức sau thành nhân tử
a)\(x^2y+2xy+y\)
b) \(4x^2-4xy-6y^2+6xy\)
c) \(18x^5y+18x^3y-2x^3y^5-2xy^5\)
d) \(-12x^5-12x^3y-3xy^2+36x^4+36x^2y+9y^2\)
a) \(x^2y+2xy+y=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)
b) \(4x^2-4xy-6y^2+6xy=4x\left(x-y\right)+6y\left(x-y\right)=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
c) \(18x^5y+18x^3y-2x^3y^5-2xy^5=18x^3y\left(x^2+1\right)-2xy^5\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(18x^3y-2xy^5\right)=2xy\left(x^2+1\right)\left(9x^2-y^4\right)=2xy\left(x^2+1\right)\left(3x-y^2\right)\left(3x+y^2\right)\)
d)
d) \(-12x^5-12x^3y-3xy^2+36x^4+36x^2y+9y^2=-3x\left(4x^4+4x^2y+y^2\right)+9y\left(4x^4+4x^2y+y^2\right)\)\(=\left(4x^4+4x^2y+y^2\right)\left(9-3x\right)\)
Giải hệ phương trình:
\(\hept{\begin{cases}2+2x^2-2y^2+3xy-4x-3y=0\\\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\end{cases}}\)
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)
\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)
<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)
<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)
<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)
<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)
<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)
<=> \(x-3y-3=0\)
vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)
<=> x = 3y + 3
Thế vào phương trình trên ta có:
\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)
<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk
Vậy hệ vô nghiệm.
Tính giá trị biểu thức:
a) [ 12 ( 2 x + 3 y ) 3 - 18 ( 2 x + 3 y ) 2 ]:(-6x - 9y) tại x = 3 2 ;y = l;
b) [ ( 2 x - y ) 4 + 8 ( y - 2 x ) 2 - 2x + y]: (2y - 4x) tại x = 1; y = -2.
1) Tìm x
a) 3x(12x-5)-6x(6x-5)=0
b)x^2+3x-4
b) (a-3)x=a^2-9
2) tinh
a) (x^2-4x+4)/(x-2)
b) (4x^2-9y^2)/(2y+3y)
thực hiện phép tính
(x^2-y^2).\(\dfrac{x^2+y^2}{y^4-x^2y^2}\)
\(\dfrac{4x^2-9y^2}{xy}\):(2x-3y)
Ta có:(x2-y2)\(.\dfrac{x^2+y^2}{y^4-x^2y^2}\)\(=\left(x^2-y^2\right).\dfrac{x^2+y^2}{y^2\left(y^2-x^2\right)}=-\dfrac{x^2+y^2}{y^2}\)
Ta có:\(\dfrac{4x^2-9y^2}{xy}:\left(2x-3y\right)=\dfrac{\left(2x-3y\right)\left(2x+3y\right)}{xy}.\dfrac{1}{\left(2x-3y\right)}=\dfrac{2x+3y}{xy}\)
1) Chứng minh bt sau ko phụ thuộc vào biến
a) ( x-1)^ 3 - ( x+4) ( x^2- 4x+16) + 3x ( x-1)
b) (2x+3y) ( 4x^2- 6xy + 9y^2) - ( 2x - 3y ) ( 4x^2+ 6xy + 9y^2) - 27 ( 2y^3- 1 )
c) y( x^2- y^2) ( x^2+ y^2) - y( x^4- y^4)
d) ( x-1)^3- ( x-1) ( x^2+ x + 1 ) - 3 ( 1-x).x