chứng minh rằng: Nếu 6x + 11y ⋮ 31 thì x + 17y ⋮ 31
Cho x,y thuộc Z. Chứng minh rằng nếu 6x+11y chia hết cho 31 thì x+11y chia hết cho 31.
Đề sai. Bạn cho $x=3; y=4$ thì $6x+11y=62$ chia hết cho $31$ nhưng $x+11y=47$ không chia hết cho $31$
Cho x,y thuộc Z. Chứng minh rằng nếu 6x+11y chia hết cho 31 thì x+11y chia hết cho 31.
@Hồ Đức Việt chép mạng cẩn thận nhá
6x+11y \(⋮\)cho 31=>6(6x+11y) chia hết cho 31=>36x+66y chia hết cho 31=>31x+31y+5x+35y chia hết cho 31Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31
x+7y chia hết cho 31=>6(x+7y) chia hết cho 31=>6x+42y chia hết cho 31=>6x+11y+31y chia hết cho 31Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
đề là x+11y mà bn
chứng minh rằng nếu 6x -11y chia hết cho 31 với x,y thuộc 2 thì x+7ycũng chia hết cho 31
đề sai rồi bn!
phải là 6x + 11y chứ.
xem lại đề.
cho x,y thuộc Z. Chứng tỏ rằng:
a, Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31
b, Nếu x + 7y chia hết cho 31 thì 6x + 11y chia hết cho 31
có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y
6x + 11y chia hết cho 31; 31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31
làm ngược lại
Gọi A = 6x + 7y − 6x + 11y
⇒A = 6x + 42y − 6x − 11y
=> A = y(42 − 11)= 31y
Vì 31y chia hết cho 31 và 6x + 11y chia hết cho 31
Nên 6 (x+7y) chia hết cho 31.
Do ƯCLN(6;31) = 1 nên x+7y chia hết cho 31
Vậy : Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31
x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
zậy ...
chứng minh rằng nếu 6x +11y chia hết cho 31 và x, y thuộc Z thì x+ 7y cũng chia hết cho 31
6x+11y chia hết cho 31
=>6(6x+11y) chia hết cho 31
=>36x+66y chia hết cho 31
=>31x+31y+5x+35y chia hết cho 31
Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31
Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31
x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
Ta xét : P= \(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)
Mặt khác: \(6x+11y⋮31\)
=> \(6\left(x+7y\right)⋮31\)(1)
Mà \(ƯCLN_{\left(6;31\right)}=1\)(2)
Từ (1)(2)=> x+7y chia hết cho 11(đpcm)
Ta xét: P=\(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)
Mặt khác: \(6x+11y⋮31\)
=> \(6\left(x+7y\right)⋮31\)(1)
Mà \(ƯCLN_{\left(6;31\right)}=1\left(2\right)\)
Từ (1)(2)=> x+7y chia hết cho 31(đpcm)
chứng minh rằng
Nếu 6x+11y chia hết cho 31 thì x +7y chia hết cho 31 (vs mọi n)
Đặt A = 6x + 11y; B = x + 7y
Xét hiệu: 6B - A = 6.(x + 7y) - (6x + 11y)
= 6x + 42y - 6x - 11y
= 31y
Do A chia hết cho 31; 31y chia hết cho 31
=> 6B chia hết cho 31
Mà (6;31)=1 => B chia hết cho 31 hay x + 7y chia hết cho 31 (đpcm)
Cho x,y thuộc Z. Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31.
Ngược lại x + 7y chia hết cho 31 thì 6x + 11y cũng chia hết cho 31.
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
Chứng minh rằng: nếu 6x+11y cha hết 31 thì x+7y:31
( Làm Luôn Nhanh Và Gấp. Mình Đang Cần )
Vì 6x+11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)
ta có 6*(6x-11y)-5*(x+7y)=31x-31y chia hết cho 31=>6x - 11y chia hết cho 31 thì x + 7y chia hết cho 31. Ngược lại nếu x + 7y chia hết cho 31 thì 6x - 11y chia hết cho 31
ta có 6*(6x+11y)-5*(x+7y)=31x+31y chia hết cho 31=>6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31. Ngược lại nếu x + 7y chia hết cho 31 thì 6x + 11y chia hết cho 31
6x+11y chia hết cho 31 ; 31y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hêt cho 31
=>6.(x+7y) chia hết cho 31
Mà 6 không chia hết cho 31 nên x+7t chia hết cho 31
Chứng minh rằng nếu 6x +11y chia hết 31 , x , y thuộc Z thì x + 7y cùng chia hết 31
Giải cách làm thật rõ nhé !
6x+11y chia hết 31
=>6x+11y+31y chia hết 31
=> 6x+42y chia hết 31
=> 6(x+7y) chia hết 31
Vì 6 và 31 nguyên tố cùng nhau
=> x+7y chia hết 31
Vậy........
Bạn có hiểu không? Không hiểu thì hỏi nhé!
cho x,y\(\in\) Z. Chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31. Ngược lại x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31