Giá trị của y, biết: lx -y + 5l + lx - 1l =0
1. với giá trị nào của x thì A=lx-3l + lx-5l + lx-7l đạt giá trị nhỏ nhất ?
2. với giá trị nào của x thì B= lx-1l + lx-2l + lx-3l + lx-5l đạt giá trị nhỏ nhất ?
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Tìm x,y,z thuộc Z biết lx + 5l + ly - 4l + lx - 2l = 0 ( l là giá trị tuyệt đối )
Đề phải là \(\left|x+5\right|+\left|y-4\right|+\left|z-2\right|=0\)
Vì trị tuyệt dối luôn lớn hơn hoặc bằng 0 mà tổng các trị tuyệt đối = 0 nên
\(x+5=0\Leftrightarrow x=-5\)
\(y-4=0\Leftrightarrow y=4\)
\(z-2=0\Leftrightarrow z=2\)
Vậy \(\left(x;y;z\right)=\left(-5;4;2\right)\)
Giá trị của x+y+z biết:
lx-5l + ly-4l + lz-4l = 0
Giải giúp mình với 1 câu cũng được tick cho
gấp lắm
Bài 1 Tìm x
a lx-3/2l+l2.5-xl=0
b l3x-1l=l4-xl
c l2x+3l=x+3
Bài 2 Tìm giá trị nhỏ nhất
a B=lx-1/4l+lx-3/4l
b C=lx-1l+lx-2l+lx-5l
1.a) |x - 3/2| + |2,5 - x| = 0
=> |x - 3/2| = 0 và |2,5 - x| = 0
=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).
Vậy x rỗng.
Biết x-y=2 Tìm giá trị nhỏ nhất của biểu thức
C=lx+1l+l2y+1l
Lời giải:
$x-y=2\Rightarrow x=y+2$
$C=|x+1|+|2y+1|=|y+2+1|+|2y+1|=|y+3|+|2y+1|$
Nếu $y\geq \frac{-1}{2}$ thì:
$C=y+3+2y+1=4y+4\geq 4.\frac{-1}{2}+4=2$
Nếu $\frac{-1}{2}> y\geq -3$ thì:
$C=y+3+[-(2y+1)]=2-y> 2-\frac{-1}{2}=2,5$
Nếu $y< -3$ thì:
$C=-y-3-2y-1=-4y-4=-4(y+1)> -4(-3+1)=8$
Từ các TH trên suy ra $C_{\min}=2$ khi $y\geq \frac{-1}{2}$
Tìm x
a) lx+1l + lx+2l + lx+3l = 2x
b) lx+1l + lx+3l + lx+5l = 4x
c) lx-5l - x = 3
l là dấu giá trị tuyệt đối
Giúp mình câu này với! please tick cho ai trả lời nhanh nhất (Một câu cũng được)
Bài 1 Tìm x
a lx-3/2l+l2.5-xl=0
b l3x-1l=l4-xl
c l2x+3l=x+3
Bài 2 Tìm giá trị nhỏ nhất
a B=lx-1/4l+lx-3/4l
b C=lx-1l+lx-2l+lx-5l
Tìm x và y biết
a. 2l2x-3l=1/2
b. 7,5-3l5-2xl=-4,5
c. l3x-4l+l5y+5l=0
d. lx+3l+lx+1l=3x
a) 2|2x-3| = 1/2
=> |2x-3| = 1/4
=> 2x-3 = 1/4 hoặc 2x-3 = -1/4
=> x = 13/8 hoặc x = 11/8
b) 7,5 - 3|5-2x| = -4,5
=> 3|5-2x| = 12
=> |5-2x| = 4
=> 5-2x = 4 hoặc 5-2x = -4
=> x = 1/2 hoặc x = 4,5
c) |3x-4| + |5y+5| = 0
=> 3x-4 = 0 hoặc 5y+5 = 0
=> x = 4/3 hoặc y = -1
d) |x+3| + |x+1| = 3x
=> x+3+ x+1 = 3x
=> 2x + 4 = 3x
=> x = 4
Biết 6x+y=5 tìm giá trị nhỏ nhất của biểu thức:
A= lx+1l+ly-2l
Lời giải:
$6x+y=5$
$\Rightarrow y=5-6x$
Khi đó: $A=|x+1|+|y-2|=|x+1|+|5-6x-2|=|x+1|+|3-6x|$
Nếu $x<-1$ thì:
$A=-x-1+3-6x=2-7x> 2-7(-1)=9$
Nếu $\frac{1}{2}\geq x\geq -1$ thì:
$A=x+1+3-6x=4-5x\geq 4-5.\frac{1}{2}=\frac{3}{2}$
Nếu $x> \frac{1}{2}$ thì:
$A=x+1+6x-3=7x-2> 7.\frac{1}{2}-2=\frac{3}{2}$
Từ 3 TH trên suy ra $A_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$