Những câu hỏi liên quan
H24
Xem chi tiết
NN
30 tháng 9 2023 lúc 19:49

\(S=1+3^2+3^4+...+3^{2022}\)

\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)

\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)

d, không đáp án nào đúng

Bình luận (0)
AH
30 tháng 9 2023 lúc 20:02

Lời giải:

$S=1+3^2+3^4+....+3^{2022}$

$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$

$\Rightarrow 9S-S=3^{2024}-1$

$\Rightarrow S=\frac{3^{2024}-1}{8}$

Đáp án D.

Bình luận (0)
LM
Xem chi tiết
NT
16 tháng 7 2021 lúc 20:40

Bài 9:

a) Ta có: \(A=\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)

\(=4x^2+4xy+y^2-4x^2+y^2-xy-y^2\)

\(=3xy-y^2\)

\(=3\cdot\left(-2\right)\cdot3-3^2=-18-9=-27\)

b) Ta có: \(B=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)

\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)

\(=-13ab+2a+b-2\)

\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)

\(=\dfrac{31}{2}\)

Bình luận (0)
NT
16 tháng 7 2021 lúc 20:36

Bài 7: 

a) \(498^2=\left(500-2\right)^2=250000-2000+4=248004\)

b) \(93\cdot107=100^2-7^2=10000-49=9951\)

c) \(163^2+74\cdot163+37^2=\left(163+37\right)^2=200^2=40000\)

d) \(1995^2-1994\cdot1996=1995^2-1995^2+1=1\)

e) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(=18^8-18^8+1=1\)

f) \(125^2-2\cdot125\cdot25+25^2=\left(125-25\right)^2=100^2=10000\)

Bình luận (0)
NT
16 tháng 7 2021 lúc 23:20

Bài 8:

a) Ta có: \(\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(x^2+3x+1-3x+1\right)^2\)

\(=\left(x^2+2\right)^2\)

\(=x^4+4x^2+4\)

b) Ta có: \(\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)

\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)

\(=-9x^2\)

c) Ta có: \(\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)

\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)

\(=-4x^2\)

Bình luận (0)
MF
Xem chi tiết
PT
Xem chi tiết
NS
18 tháng 4 2020 lúc 12:55

\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)

\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)

\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)

\(A=1-\left(\frac{1}{2}\right)^{20}\)

Bình luận (0)
 Khách vãng lai đã xóa
BA
Xem chi tiết
TN
Xem chi tiết
MG
16 tháng 9 2021 lúc 21:37

Ta có :

B = 2100 - 299 + 298 - 297 + ... + 22 - 2 + 1

=> B = ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )

=> 22B = 2 . [ ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 ) ]

=> 4B = ( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )

=> 4B - B = [( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )] - [( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )]

=> 3B = ( 2102 - 1 ) + ( 2 - 2101 )

=> 3B = 2101 - 1

=> B = \(\frac{2^{101} - 1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa

gọi dãy số là A, ta có:

A = 2100 - 299 - ...... - 21

2A = 2101 - 2100 - .... - 22

2A = ( 2101 - ... - 22 ) - ( 2100 - ... - 2 )

A = 2101 - 2

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
NT
6 tháng 11 2021 lúc 21:47

a: \(=25x^4-10x^3+5x^2\)

c: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)

Bình luận (0)
VH
Xem chi tiết
VI

Chắc đề thế này! 

\(S=1+2+2^2+2^3+2^4+...+2^{2014}\)

\(2S=2+2^2+2^3+2^4+...+2^{2015}\)

\(2S-S=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)

\(\Rightarrow2S-S=S=2^{2015}-1< 2^{2015}\Rightarrow S< D\)

Bình luận (0)
 Khách vãng lai đã xóa
BK
Xem chi tiết
NT
27 tháng 8 2023 lúc 9:57

Bài 1 :

\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)

\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)

\(\Rightarrow M< N\)

Bình luận (0)
NT
27 tháng 8 2023 lúc 10:06

Bài 3 :

a) \(t^2+5t-8\) khi \(t=2\)

\(=5^2+2.5-8\)

\(=25+10-8\)

\(=27\)

b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)

\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)

\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)

c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)

\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)

\(\left(1\right)=1^3=1\)

Bình luận (0)
NT
27 tháng 8 2023 lúc 10:43

Bài 2 :

a) \(...=2^3\left(19-14\right)+1=8.5+1=41\)

b) \(...=100-\left[60:\left(5^2-15\right)\right]=100-\left[60:10\right]=100-6=94\)

c) \(...=160:\left[17+\left(9.5-\left(14+2^3\right)\right)\right]=160:\left[17+\left(45-22\right)\right]=160:\left[17+23\right]=160:40=4\)

d) \(...=798+100\left[16-2\left(25-22\right)\right]=798+100\left[16-2.3\right]=798+100.10=798+1000=1798\)

Bình luận (0)
BH
Xem chi tiết
TG
22 tháng 3 2018 lúc 12:14

Đặt  A  =\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)    

Ta có \(3A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)

           \(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)

     => \(2A=3A-A=3-\frac{1}{3^{2005}}\)

   => \(A-\frac{3-\frac{1}{3^{2005}}}{2}\)

Bình luận (0)