chứng minh H=1/5^2+2/5^3+..........+11/5^12 <1/16
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.Chứng minh rằng: √2 + √6 +√12 + √20 < 12
2. Cho A=1/5+2/(5^2)+3/(5^3)+......+10/(5^10)+11/(5^11). Chứng minh rằng A < 5/16
Chứng minh: 1/5^2 + 2/5^3 + 3/5^4 + ... + 11/5^12 < 1/16
Chứng minh: 1/5^2 + 2/5^3 + 3/5^4 + ... + 11/5^12 < 1/16
Cho P=1/52+2/5^3+3/5^4+4/5^5+...+11/5^12. Chứng minh rằng P<1/16
Chứng minh
a)B=1/10+1/11+...+1/28 > 1
b)C=1/10.1/11+1/11.1/12+...+1/20.1/21 > 1/20
c)E=1/51+1/52+...+1/100 > 1
d)F=1/2^2+1/3^2+...+1/9^2
Chứng minh 2/5<F<8/9
e)H=1/31+1/32+...+1/60
Chứng minh 3/5<H<4/5
f)K=1/21+1/22+...+1/30>1/3
1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)
Vậy chia hết cho 30
\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)
Vậy chia hết cho 31
cho n là số tự nhiên. chứng minh A=1/5^2+2/5^3+3/5^4+4/5^5+5/5^6+....+n/5^n+1+......+11/5^12<1/16
a)cho \(A=11^{n+2}+12^{2n+1}\)
Chứng minh A⋮33
b) chứng minh \(\left(5^{2016}+5^{2017}+3^{2018}\right)\) ⋮ 31
Cho A= 1/5^2 + 2/5^3 + 3/5^4 + ....... + n/5^n+1 + ....... + 11/5^12 với n thuộc N.
Chứng minh rằng A < 1/16
5A = 1/5 + 2/5^2 +3/5^3 +...+ 11/5^11
=> 4A= 1/5+1/5^2 +1/5^3 +...+1/5^11 - 11/5^12
=> 20A = 1+1/5+1/5^2+...+1/5^10 - 11/5^11
=> 16A = 1-1/5^11+11/5^12-11/5^11
Vì 1-1/5^11 < 1 ; 11/5^12 -11/5^11 < 0
=> 16A < 1
=> A < 1/16