Những câu hỏi liên quan
NQ
Xem chi tiết
NT
24 tháng 3 2021 lúc 20:46

Bài 1: 

Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)

\(=\dfrac{11}{27}\)

Bình luận (0)
NT
24 tháng 3 2021 lúc 22:13

Câu 2: 

B=1+1/2+1/3+....+1/2010

 =(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)

 = 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006

 =2011.(1/2010+.....1/1005.1006)

Vậy B có tử số chia hết cho 2011 (đpcm).

Câu 3:

 \(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)

 \(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)

Bình luận (0)
NA
Xem chi tiết
CL
14 tháng 5 2018 lúc 19:52

diêu anh ê mày mới lập à

Bình luận (0)
H24
14 tháng 5 2018 lúc 22:28

tự làm ko hỏi nhiều bài dễ

Bình luận (0)
TD
Xem chi tiết
LH
Xem chi tiết
PT
10 tháng 11 2016 lúc 10:16

S tận cùng =0 nha bạn mình tính rồi đó lúc nãy mình bị lộn

bài 2 có cần tìm tận cung ko bạn

Bình luận (0)
NT
Xem chi tiết
HN
Xem chi tiết
MC
Xem chi tiết
NN
29 tháng 10 2020 lúc 20:52

\(Y=1+3+3^2+3^3+.......+3^{98}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.........+\left(3^{96}+3^{97}+3^{98}\right)\)

\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+......+3^{96}.\left(1+3+3^2\right)\)

\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+.........+3^{96}.\left(1+3+9\right)\)

\(=13+3^3.13+.......+3^{96}.13\)

\(=13.\left(1+3^3+.......+3^{96}\right)⋮13\)( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
LD
29 tháng 10 2020 lúc 20:54

Y = 1 + 3 + 32 + 33 + ... + 398

= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 396 + 397 + 398 )

= 13 + 33( 1 + 3 + 32 ) + ... + 396( 1 + 3 + 32 )

= 13 + 33.13 + ... + 396.13

= 13( 1 + 33 + ... + 396 ) chia hết cho 13 ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
H24
29 tháng 10 2020 lúc 21:07

Ta có:

\(Y=1+3+3^2+3^3+...+3^{98}\)(Có 99 số hạng)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)(Có 33 nhóm)

\(=\left(1+3+3^2\right)+\left(1+3+3^2\right).3^3+...+3^{96}.\left(1+3+3^2\right)\)

\(=13+13.3^3+...+13.3^{96}\)

\(=13.\left(1+3^3+...+3^{96}\right)\)

\(13⋮13\)

\(1+3^3+...+3^{96}\inℤ\)

Suy ra:\(13.\left(1+3^3+...+3^{96}\right)⋮13\)

Hay\(Y⋮13\left(đpcm\right)\)

Vậy...

Linz

Bình luận (0)
 Khách vãng lai đã xóa
AA
Xem chi tiết
TL
Xem chi tiết
NH
28 tháng 1 2016 lúc 20:12

a=(1-3+3^2-3^3)+(3^4-3^5...+(3^96-3^97+3^98-3^99)

a=(1-3+3^2-3^3)+3^4x(1-3+3^2-3^3)+...+3^96x(1-3+3^2-3^3)

a=(-20)+3^4x(-20)+...+3^96x(-20)

a=(-20)+(3^4+3^8+...+3^96)

vi-20chia het cho 4=>achia hetcho 4

Bình luận (0)
NH
28 tháng 1 2016 lúc 20:11

a=(1-3+3^2-3^3)+(3^4-3^5...+(3^96-3^97+3^98-3^99)

a=(1-3+3^2-3^3)+3^4x(1-3+3^2-3^3)+...+3^96x(1-3+3^2-3^3)

a=(-20)+3^4x(-20)+...+3^96x(-20)

a=(-20)+(3^4+3^8+...+3^96)

vi-20chia het cho 4=>achia hetcho 4

tick mk nha

Bình luận (0)