Những câu hỏi liên quan
ND
Xem chi tiết
WK
22 tháng 6 2016 lúc 15:35

a) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)      ;        \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

Vì 9> 8\(\Rightarrow9^{100}>8^{100}\)

Phần b mk chưa làm được

Bình luận (0)
TM
22 tháng 6 2016 lúc 15:35

a) Ta có:

3200=(32)100=9100

2300=(23)100=8100

Vì 9100>8100 nên 3200>2300

b) Ta có: 

912=(93)4=7294

268=(262)4=6764

Vì 7294<6764 nên 912<268

Bình luận (0)
NH
22 tháng 6 2016 lúc 18:43

a) Ta có:

      3200=(32)100=9100  (1) 

      2300=(23)100=8100 (2)

Từ 1 và 2 ta thấy 9100>8100  => 3200>2300

b) Ta có: 

          912=(93)4=7294 (1)

          268=(262)4=676(2)

Từ 1 và 2 ta thấy 7294<6764 => 912<268

Bình luận (0)
HV
Xem chi tiết
NT
2 tháng 8 2023 lúc 20:36

1: 243^5=(3^5)^5=3^25

3*27^8=3*3^24=3^25=243^5

3: 3^300=27^100

2^200=4^100

mà 27>4

nên 3^300>2^200

4: 15^2=3^2*5^2

81^3*125^3=3^12*5^9

=>15^2<81^3*125^3

6: 125^5=5^15

25^7=5^14

mà 15>14

nên 125^5>25^7

Bình luận (1)
KO
Xem chi tiết
GT
11 tháng 9 2018 lúc 13:14

so sánh

a) 3200và 2300

Ta có :

2300 = (23)100 = 8100

3200 = ( 32)100 = 9100

2300 < 3200 

b) 912 và 268

Ta có :

912 = ( 93)4 = 7294

268 = ( 262)= 6764

912>268

Bình luận (0)
TT
11 tháng 9 2018 lúc 13:14

a, Ta có:

\(3^{200}\) =  \(\left(3^2\right)^{100}\) = \(9^{100}\)

\(2^{300}\) = \(\left(2^3\right)^{100}\)\(8^{100}\)

Vì 8 < 9 => \(8^{100}\) < \(9^{100}\) 

Hay \(3^{200}\) < \(2^{300}\)

b, Ta có:

\(9^{12}\) = \(\left(9^3\right)^4\) = \(729^4\)

\(26^8\) = \(\left(26^2\right)^4\) = \(676^4\) 

Vì 729 > 676 => \(729^4\) < \(676^4\)

Hay \(9^{12}\) < \(26^8\)

Bình luận (0)
H24
11 tháng 9 2018 lúc 13:20

Ta có : 3200= 9100

             2300= 8100

Mà 9>8 => 9100>8100

Vậy 3200>2300

b) Ta có: 912= 324 =278

Mà 27> 26 => 278>268 

Vậy 912>268

Bình luận (0)
NT
Xem chi tiết
NM
18 tháng 10 2023 lúc 13:40

a/

\(9^5=\left(3^2\right)^5=3^{10}>3^9=\left(3^3\right)^3=27^3\)

b/ \(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)

c/

\(3.4^7=3.\left(2^2\right)^7=3.2^{14}>2.2^{14}=2^{15}=\left(2^3\right)^5=8^5\)

Bình luận (0)
HV
Xem chi tiết
NT
3 tháng 8 2023 lúc 16:20

1: 243^5=(3^5)^5=3^25

3*27^8=3*(3^3)^8=3^25

=>243^5=3*27^8

6: 125^5=(5^3)^5=5^15

25^7=(5^2)^7=5^14

=>125^5>25^7(15>14)

5: 78^12-78^11=78^11(78-1)=78^11*77

78^11-78^10=78^10*77

mà 11>10

nên 78^12-78^11>78^11-78^10

 

Bình luận (0)
NT
Xem chi tiết
TT
9 tháng 10 2016 lúc 15:02

Viết rối qá chả thấy j.

\(99^2vs9999^{10}\)

\(9999^{10}=\left(101\cdot99\right)^{10}=101^{10}\cdot99^{10}\)

Vì \(99^{10}>99^2=>99^2< 9999^{10}\)

Bình luận (0)
NV
9 tháng 10 2016 lúc 15:33

a) Ta có: 2^91 = (2^13)^7 = 8192^7

5^35 = (5^5)^7 = 3125^7

Vì 8192 > 3125 nên 8192^7 > 3125^7

Vậy 2^91 > 5^35

b) Ta có: 9999^10 = 99^10 . 101^10

Vì 99^2 < 99^10 nên 99^2 < 99^10 . 101^10

Vậy 99^2 < 9999^10

c) Ta có: 2^300 = (2^6)^50 = 64^50

3^200 = (3^4)^50 = 81^50

Vì 49 < 64 < 81 nên 49^50 < 64^50 < 81^50

Vậy 49^50 < 2^300 < 3^200

d) 9^3/25^3 = (9/25)^3

3^6/2^12 = (3^2)^3/(2^4)^3 = 9^3/16^3 = (9/16)^3

Vì 9/25 < 9/16 nên (9/25)^3 < (9/16)^3

Vậy 9^3/25^3 < 3^6/2^12.

Bình luận (0)
TN
Xem chi tiết
SG
22 tháng 6 2016 lúc 14:32

a, 2300 = (23)100 = 8100

3200 = (32)100 = 9100

Vì 8100 < 9100

=> 2300 < 3200

b, 220 = (25)4 = 324

312 = (33)4 = 274

Vì 324 > 274

=> 220 > 312

c, 2225 = (23)75 = 875

3150 = (32)75 = 975

Vì 875 < 975

=> 2225 < 3150

d, 2115 = (3.7)15 = 315.715

275.498 = (33)5.(72)8 = 315.716

Vì 315.715 < 315.716

=> 2115 < 275.498

Bình luận (0)
H24
Xem chi tiết
DD
Xem chi tiết
H24
28 tháng 8 2018 lúc 22:20

9^27=3^81 > 81^13  =3^52

5^14 =25^7 < 27^7 

10^30>9^30=3^90 > 2^100 (chú ý 3^3>2^4)

2^300=8^100 < 3^200=9^100

8^5=2^15=2^6.2^9 < 2^6.3^6  (chú ý 2^3<3^2)

3^450=(3^3)^150=27^150 > 5^300=(5^2)^150=25^150

Bình luận (0)