Những câu hỏi liên quan
PQ
Xem chi tiết
NN
Xem chi tiết
BT
15 tháng 7 2021 lúc 15:07

Đúng thù thì ❤️ giúp mik nha bạn. Thx bạn

 

undefined

Bình luận (0)
TV
Xem chi tiết
NL
23 tháng 12 2020 lúc 23:30

\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)

\(\Rightarrow-4\le x+y\le-2\)

\(\Rightarrow2016\le B\le2018\)

\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)

\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)

Bình luận (0)
TA
Xem chi tiết
MP
18 tháng 2 2018 lúc 20:49

ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow x^2+2xy+y^2+7x+7y=-y^2\le0\)

\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)\le0\)

\(\Leftrightarrow\left(x+y+7\right)\left(x+y\right)\le0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y+7\ge0\\x+y\le0\end{matrix}\right.\\\left[{}\begin{matrix}x+y+7\le0\\x+y\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y\ge-7\\x+y\le0\end{matrix}\right.\\\left[{}\begin{matrix}x+y\le-7\\x+y\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-7\le x+y\le1\) \(\Leftrightarrow-6\le x+y+1\le1\)

vậy \(GTNN\) của \(A\)\(-6\)\(GTLN\) của \(A\)\(1\)

Bình luận (1)
NT
5 tháng 8 2017 lúc 9:37

hình như là y2 nhe

Bình luận (0)
H24
5 tháng 8 2017 lúc 9:46

Hồng Phúc Nguyễn

Bình luận (1)
TD
Xem chi tiết
MP
31 tháng 8 2018 lúc 17:27

bài 4 : ta có : \(x+2y=3\Leftrightarrow x=3-2y\)

\(\Rightarrow E=x^2+2y^2=\left(3-2y\right)^2+2y^2=4y^2-12y+9+2y^2\)

\(=6y^2-12y+6+3=6\left(y-1\right)^2+3\ge3\)

\(\Rightarrow E_{max}=3\) khi \(x=y=1\)

bài 5 : ta có : \(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow2y^2-4y+2=-\left(x^2+2xy+y^2\right)+10\left(x+y\right)-16\)

\(\Leftrightarrow2\left(y-1\right)^2=-\left(x+y\right)^2+10\left(x+y\right)-16\ge0\)

\(\Leftrightarrow2\le x+y\le8\)

\(\Rightarrow P_{min}=2\) khi \(\left\{{}\begin{matrix}y=1\\x+y=2\end{matrix}\right.\Leftrightarrow x=y=1\)

\(\Rightarrow P_{max}=8\) khi \(\left\{{}\begin{matrix}y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

vậy ...........................................................................................................................

Bình luận (0)
PQ
Xem chi tiết
YN
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NK
Xem chi tiết
PQ
Xem chi tiết
MP
29 tháng 8 2018 lúc 7:52

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

Bình luận (1)
MP
29 tháng 8 2018 lúc 8:02

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)

Bình luận (3)
MP
29 tháng 8 2018 lúc 8:30

câu 2 này là câu tổ hợp của câu 1 và câu 3 thôi .

a) ta có : \(3x^2+y^2+2xy+4=7x+3y\)

\(\Leftrightarrow2\left(x-1\right)^2=-\left(x+y\right)^2+3\left(x+y\right)-2\)

\(\Leftrightarrow1\le x+y\le2\)

\(\Rightarrow P_{max}=2\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

\(P_{min}=1\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

b) ta có : \(3x^2+y^2+2xy+4=7x+3y\)

\(\Leftrightarrow\left(x+y\right)^2-3\left(x+y\right)+\dfrac{9}{4}=-2x^2+4x-\dfrac{7}{4}\)

\(\Leftrightarrow\left(x+y-\dfrac{3}{2}\right)^2=-2x^2+4x-\dfrac{7}{4}\ge0\)

\(\Leftrightarrow\dfrac{4-\sqrt{2}}{4}\le x\le\dfrac{4+\sqrt{2}}{4}\)

\(\Rightarrow\) GTNN của \(x\)\(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\y=\dfrac{2+\sqrt{2}}{4}\end{matrix}\right.\)

\(\Rightarrow\) GTNN của \(x\)\(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\y=\dfrac{2-\sqrt{2}}{4}\end{matrix}\right.\)

mk nghỉ đề này không phải của lớp 8 đâu phải không :)

Bình luận (0)