Những câu hỏi liên quan
LH
Xem chi tiết
DH
13 tháng 5 2018 lúc 19:48

rgebdrwrybwrybery

Bình luận (0)
SL
Xem chi tiết
NA
16 tháng 10 2016 lúc 16:31

sử dụng đồng dư thức hoặc hằng đẳng thức

Bình luận (0)
VT
Xem chi tiết
VM
9 tháng 4 2023 lúc 17:53

+) Gọi A là tổng của dãy số: 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018.
+) Số số hạng của A là:
A = (2018 - 1) : 1 + 1 = 2018.
+) Tổng A là: (2018 + 1). 2018 : 1 = 4074342.
Vậy, A = 4074342 (hay 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018 = 4074342). 

Bình luận (0)
VT
9 tháng 4 2023 lúc 17:57

Ah bạn à chia 2 mà ._. Nhưng mà cảm ơn

Bình luận (0)
VT
9 tháng 4 2023 lúc 18:02

+) Gọi A là tổng của dãy số: 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018.

+) Số số hạng của A là:

A = (2018 - 1) : 1 + 1 = 2018.

+) Tổng A là: (2018 + 1). 2018 : 2= 2037171

Vậy, A = 4074342 (hay 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018 = 2037171). 

Bình luận (0)
DD
Xem chi tiết
OO
18 tháng 4 2016 lúc 15:58

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

Bình luận (0)
H24
Xem chi tiết
DD
Xem chi tiết
PD
17 tháng 4 2018 lúc 18:31

/ là j zậy

Bình luận (0)
DD
17 tháng 4 2018 lúc 18:41
Máy cái /là mình ghi phần đó bạn vì mình không biét ghi phần như thế nào
Bình luận (0)
TN
Xem chi tiết
SL
Xem chi tiết
BV
17 tháng 10 2016 lúc 8:33

Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n  = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
                                                                        \(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
                                                                       \(=2016.504\left(mod2^4\right)\)
                                                                        \(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
 

Bình luận (0)
H24
16 tháng 10 2016 lúc 22:25

\(a^n+b^n\) chia hết cho a+b với n lẻ 
áp dụng cái trên là đc nhé bạn 

Bình luận (0)
ND
17 tháng 10 2016 lúc 11:19

mik mới học lớp 7

Bình luận (0)
HG
Xem chi tiết
TK
Xem chi tiết
VK
10 tháng 5 2016 lúc 20:54

M=1

k cho minh nhe

Bình luận (0)
VB
10 tháng 5 2016 lúc 20:56

2016!

Bình luận (0)