Chứng minh A= -4x^2+12x-13 <0 với mọi số x
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Chứng minh √(3x2-12x+13) + √(2x4-16x2+41) lớn hơn hoặc bằng 4
b)tìm GTNN của A=√(3x2-12x+13) + √(2x4-16x2+41)
c) giải phương trình √(3x2-12x+13) + √(2x4-16x2+41) = -x2+4x
Bài 1 . Tính GTNN
A= x^2 - 6x + 13
B= 2x^2 + 8x
C= 4x^2 +20x
Bài 2: Rút gọn biểu thức sau
a; (x + y )^3 - ( y -x )^3
b; (2x + 3y ) ( 2x - 3y ) - 40x ( x + 2) + 9y^2
Bài 3. Chứng minh
a, x^2 + 12x + 39 > 0
b, 4x^2 + 4x + 3 >0
Bài 1:
\(A=x^2-6x+13=\left(x-3\right)^2+4\ge4\)
Vậy \(Min\)\(A=4\)\(\Leftrightarrow\)\(x=3\)
\(B=2x^2+8x=2\left(x^2+4x+4\right)-8=2\left(x+2\right)^2-8\ge-8\)
Vậy \(Min\)\(B=-8\)\(\Leftrightarrow\)\(x=-2\)
\(C=4x^2+20x=\left(2x+5\right)^2-25\ge-25\)
Vậy \(Min\)\(C=-25\)\(\Leftrightarrow\)\(x=-\frac{5}{2}\)
Bài 3:
a) \(x^2+12x+39=\left(x+6\right)^2+3>0\)
b) \(4x^2+4x+3=\left(2x+1\right)^2+2>0\)
Chứng minh các biểu thức sau luôn dương với mọi giá trị của biến
a,x^2-4x-7
b,4x^2-12x+11
c,x^2-x+1
Câu hỏi của ĐỖ THỊ HƯƠNG TRÀ - Toán lớp 8 - Học trực tuyến OLM
mình làm rồi nhé, bạn kham khảo link
Chứng minh biểu thức luôn âm hoặc luôn dương
\(a=4x^2-12x+20\)
\(4x^2-12x+20\)
\(=\left(2x\right)^2-2.2x.3+9+11\)
\(=\left(2x-3\right)^2+11>0\forall x\)
học tốt
Chứng minh các biểu thức sau luân dương với mọi giá trị của biến
A = x^2 - 4x + 7
B = 4x^2- 12x + 11
C= x^2 -x +1
\(A=x^2-4x+7=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\forall x\)
Vậy ta có đpcm
\(B=4x^2-12x+11=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\forall x\)
Vậy ta có đpcm
\(C=x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy ta có đpcm
\(\hept{\begin{cases}A=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\\B=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\\C=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)
11/ 4x2 - 4x - 5
12/ 4x2 + 12x + 10x
13/ 4x2 - 12x - 5
14/ 9x2 + 12x + 8
tìm GTNN .cần gấp
\(4x^2-4x-5=4x^2-4x+1-6=\left(2x-1\right)^2-6\ge-6\)
\(Min=-6\Leftrightarrow x=\dfrac{1}{2}\)
\(4x^2+12x+10=4\left(x^2+3x+\dfrac{9}{4}\right)+1=4\left(x+\dfrac{3}{2}\right)^2+1\ge1\)
\(Min=1\Leftrightarrow x=-\dfrac{3}{2}\)
\(4x^2-12x-5=4\left(x^2-3x+\dfrac{9}{4}\right)-14=4\left(x-\dfrac{3}{2}\right)^2-14\ge-14\)
\(Min=-14\Leftrightarrow x=\dfrac{3}{2}\)
\(9x^2+12x+8=\left(9x^2+12x+4\right)+4=\left(3x+2\right)^2+4\ge4\)
\(Min=4\Leftrightarrow x=-\dfrac{2}{3}\)
Chứng minh các biểu thức sau luôn có giá trị dương
a)A=x^2+6x+15
b)B=4x^2+4x+11
Chứng minh các biểu thức sau luôn có giá trị âm
a)-9x^2+12x-15
b)-5-(x-1)(x+2)
a) \(A=x^2+6x+15\)
\(=x^2+6x+9+6\)
\(=\left(x+3\right)^2+6\)
Vì \(\left(x+3\right)^2\ge0\forall x\) nên \(\left(x+3\right)^2+6>0\forall x\)
Vậy ...
b) \(B=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10>0\forall x\) (trình bày như trên)
Vậy ...
a) \(-9x^2+12x-15\)
\(=-9x^2+12x-4-11\)
\(=-\left(3x-2\right)^2-11\)
Vì \(-\left(3x-2\right)^2\le0\forall x\) nên \(-\left(3x-2\right)^2-11< 0\forall x\)
Vậy ...
b) \(-5-\left(x-1\right)\left(x+2\right)\)
\(=-x^2-x+2-5\)
\(=-x^2-x-3\)
\(=-x^2-x-\dfrac{1}{4}-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}>0\forall x\)
Vậy ...
\(a,A=x^2+6x+15\)
\(=\left(x^2+6x+9\right)+6\)
\(=\left(x+3\right)^2+6\)
Ta có : ( x + 3 )2 ≥ 0 với mọi x
=> ( x + 3 )2 + 6 ≥ 6 > 0 với mọi x
=> A > 0 ( đpcm )
\(b,B=4x^2+4x+11\)
\(=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\ge10>0\forall x\left(đpcm\right)\)
( giải thích chi tiết thì tương tự câu a nhé bn Ttqminh2005
a, \(-9x^2+12x-15\)
\(=-\left(9x^2-12x+4\right)-11\)
\(=-\left(3x-2\right)^2-11\)
Ta có : \(-\left(3x-2\right)^2\le0\Rightarrow-\left(3x-2\right)^2-11\le-11< 0\forall x\) ( đpcm)
\(b,-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-x^2-x+2\)
\(=-\left(x^2+x+3\right)\)
\(=-\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{11}{4}\right]\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\) < 0 ( đpcm )
Cho H(x)=\(-4x^3+9x^2-12x+9\)
Chứng minh x=-1 là nghiệm của đa thức H(x)
giả sử \(H\left(-1\right)=0\)
\(-4.\left(-1\right)^3+9.\left(-1\right)^2-12.\left(-1\right)+9=0\)
\(4+9+12+9=0\)
\(34=0\left(vl\right)\)
vậy x= - 1 ko phải nghiệm của M(x)
\(\text{Thay x=-1 vào biểu thức H(x),ta được:}\)
\(H\left(x\right)=\left(-4\right).\left(-1\right)^3+9.\left(-1\right)^2-12.\left(-1\right)+9\)
\(H\left(x\right)=4+9-\left(-12\right)+9\)
\(H\left(x\right)=13-\left(-12\right)+9\)
\(H\left(x\right)=25+9=34\)
\(\text{Vậy x=-1 không phải là nghiệm của đa thức H(x)}\)
Chứng minh rằng với mọi x, ta có:
a) \(\frac{15}{4x^2-12x+19}\le\frac{3}{2}\)?
b) \(\frac{4x+3}{x^2+1}\le4\)?
a) Để \(\frac{15}{4x^2-12x+19}\le\frac{3}{2}\) thì \(15\cdot2\le3\cdot\left(4x^2-12x+19\right)\)
\(\Leftrightarrow30\le12x^2-36x+57\)
\(\Leftrightarrow30-12x^2+36x-57\le0\)
\(\Leftrightarrow-12x^2+36x-27\le0\)
\(\Leftrightarrow-12\left(x^2-3x+\frac{9}{4}\right)\le0\)
\(\Leftrightarrow-12\left(x-\frac{3}{2}\right)^2\le0\)(luôn đúng)
b) Để \(\frac{4x+3}{x^2+1}\le4\)
thì \(4x+3\le4\left(x^2+1\right)\)
\(\Leftrightarrow4x+3\le4x^2+4\)
\(\Leftrightarrow4x+3-4x^2-4\le0\)
\(\Leftrightarrow-4x^2+4x-1\le0\)
\(\Leftrightarrow-\left(4x^2-4x+1\right)\le0\)
\(\Leftrightarrow-\left(2x-1\right)^2\le0\)(luôn đúng)
Viết các biểu thức sau dưới dạng tổng của hai bình phương:
5)-12x+13-24y+9x^2+16y^2
6)a^2-4ab+5b^2-4bc+4c^2
7)5x^2+y^2+z^2+4xy-2xz
8)9x^2+25-12xy+2y^2-10y
9)13x^2+4x-12xy+4y^2+1
10)x^2+4y^2+4x-4y+5
11)4x^2-12x+y^2-4y+13
12)x^2+y^2+2y-6x+10
13)4x^2+9y^2-4x+6y+2
14)y^2+2y+5-12x+9x^2
15)x^2+26+6y+9y^2-10x
16)10-6x+12y+9x^2+4y^2
17)16x^2+5+8x-4y+y^2
18)x^2+9y^2+6x-12y
19)5+9x^2+9y^2+6y-12
20)x^2+20+9y^2+8x-12y
21)x^2+4y+4y^2+26-10x
22)4y^2+34-10x+12y+x^2
23)-10x+y^2-8y+x^2+41
24)x^2+9y^2-12y+29-10x5
25)9x^2+4y^2+4y-12x+5
26)4y^2-12x+12y+9x^2+13
27)4x^2+25-12x-8y+y^2
28)x^2+17+4y^2+8x+4y
29)4y^2+12y=25+8x+x^2
30)x^2+20+9y^2+8x-12y
MONG CAC BAN GIUP MINH VOI ,MINH CAN GAP ,CAM ON NHIEU