Những câu hỏi liên quan
CP
Xem chi tiết
NT
23 tháng 8 2021 lúc 14:30

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=1.8cm\\CH=3.2cm\\AH=2.4cm\end{matrix}\right.\)

Bình luận (0)
TN
23 tháng 8 2021 lúc 14:21

 

 

Xét tam giác ABC vuông tại A

+ Theo định lý Pytago ta có:

 

 

+ Theo hệ thức lượng trong tam giác vuông ta có:

A B 2 = BH. BC => BH =  A B 2 B C = 3 2 5 = 9 5 = 1 , 8 c m

Mà BH + CH = BC => CH = BC – BH = 5 – 1,8 = 3,2 cm

Lại có AH. BC = AB.AC => AH = A B . A C B C = 3.4 5  = 2,4cm

Vậy BH = 1,8cm, CH = 3,2cm, AC = 4cm, AH = 2,4 cm

Bình luận (0)
YS
Xem chi tiết
YS
Xem chi tiết
TH
24 tháng 1 2017 lúc 10:31

ta có BH + HC = BC ( vì điểm H nằm giữa B và C )

    hay 3 + 8 = BC 

suy ra BC =  11 

áp dụng định lý pi ta go thì bạn sẽ tìm ra AC

Bình luận (0)
YS
Xem chi tiết
PA
29 tháng 1 2017 lúc 8:40

nếu bạn đã học định lí Py-ta-go rồi thì ta có: AB\(^2\)+ AC\(^2\)=BC\(^2\)

                                                                5\(^2\)+    AC \(^2\)= 121

                                                                            AC        = \(\sqrt{96}\)

NHỚ BẤM ĐÚNG CHO MÌNH NHÉ!

Bình luận (0)
YS
Xem chi tiết
VM
23 tháng 1 2017 lúc 17:35

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

Bình luận (0)
VM
23 tháng 1 2017 lúc 17:38

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 1 2019 lúc 11:31

Xét tam giác ABC vuông tại A

+ Theo định lý Pytago ta có:

+ Theo hệ thức lượng trong tam giác vuông ta có:

A B 2 = BH. BC => BH =  A B 2 B C = 3 2 5 = 9 5 = 1 , 8 c m

Mà BH + CH = BC => CH = BC – BH = 5 – 1,8 = 3,2 cm

Lại có AH. BC = AB.AC => AH = A B . A C B C = 3.4 5  = 2,4cm

Vậy BH = 1,8cm, CH = 3,2cm, AC = 4cm, AH = 2,4 cm

Đáp án cần chọn là: B

Bình luận (0)
QE
Xem chi tiết
NT
16 tháng 7 2021 lúc 15:08

undefined

Bình luận (0)
BT
16 tháng 7 2021 lúc 15:12

Áp dụng định lí pi ta go 

=> AB2 + AC2 = 289

Mà \(\dfrac{AB}{AC}\) = \(\dfrac{8}{15}\)=> (\(\dfrac{AB}{AC}\))2\(\dfrac{64}{225}\)

=> AC2=225 => AC = 15 => AB = 8

Ta có: AB.AC=BC . AH

=> AH = 120/17=7.06

=>BH = 3.76

=> CH = 13.24

Đúng thì like giúp mik nha bạn. Thx bạn

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 9 2018 lúc 18:08

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm

b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm

c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm

Bình luận (0)
H24
Xem chi tiết
NT
18 tháng 8 2021 lúc 21:57

Bài 1:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Bình luận (0)
NT
18 tháng 8 2021 lúc 21:59

Bài 2: 

Ta có: BC=HB+HC

nên BC=3,6+6,4

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8cm

Bình luận (0)