Những câu hỏi liên quan
TB
Xem chi tiết
NH
Xem chi tiết
TB
Xem chi tiết
CG
Xem chi tiết
NQ
22 tháng 7 2017 lúc 21:06

A= (x^2 - 2.x.1/2 + 1/4) -1/4

=(x-1/2)^2 -1/4 >= -1/4 

Dấu"=" xảy ra <=> x-1/2 = 0 <=>x=1/2

Vậy Min A= -1/4 <=> x=1/2

Bình luận (0)
GT
Xem chi tiết
GT
26 tháng 11 2016 lúc 15:39

Lam giup minh voi

Bình luận (0)
LM
Xem chi tiết
NC
14 tháng 6 2019 lúc 10:34

\(P=\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{x+2y+5}+\frac{x+2y+5}{20}-\frac{xy}{20}-\frac{x+2y+5}{20}\)

\(\ge2\sqrt{\frac{1}{5xy}.\frac{xy}{20}}+2.\sqrt{\frac{5}{x+2y+5}.\frac{x+2y+5}{20}}-\frac{x\left(3-x\right)+x+2\left(3-x\right)+5}{20}\)

\(=2.\frac{1}{10}+2.\frac{1}{2}-\frac{-x^2+2x+11}{20}\)

\(=\frac{x^2-2x+1}{20}+\frac{3}{5}=\frac{\left(x-1\right)^2}{20}+\frac{3}{5}\ge\frac{3}{5}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{5xy}=\frac{xy}{20}\\\frac{5}{x+2y+5}=\frac{x+2y+5}{20}\\\left(x-1\right)^2=0,x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\x+2y+5=10\\x=1,x+y=3\end{cases}\Leftrightarrow}x=1,y=2\)

Vậy min P=3/5 khi x=1, y=2

Bình luận (0)
LM
14 tháng 6 2019 lúc 20:12

Em co cach nay ngan gon hon, cac ban co the tham khao 

P=\(\frac{1}{5xy}\) + \(\frac{5}{x+2y+5}\)=\(\frac{1}{5xy}\)+\(\frac{25}{5\left(x+2y+5\right)}\)

                                                   = \(\frac{1^2}{5xy}\)+\(\frac{5^2}{5\left(x+2y+5\right)}\)

                                                    \(\geq\) \(\frac{\left(1+5\right)^{^2}}{5xy+5\left(x+2y+5\right)}\)

                                                     =\(\frac{36}{5\left(xy+x+2y+2+3\right)}\)

                                                     =\(\frac{36}{5\left(\left(x+2\right)\left(y+1\right)+3\right)}\)

                                                      =\(\frac{36}{5\left(\frac{\left(x+y+3\right)^2}{4}+3\right)}\) (do \((x+2)(y+1) \leq \frac {(x+y+3)^2}{4}\) )

                                                      =\(\frac{36}{5\left(\frac{\left(3+3\right)^2}{4}+3\right)}\) (do \(x+y \leq 3\) )

                                                      =\(\frac{3}{5}\) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{5xy}=\frac{1}{x+2y+5}\\x+2=y+1\\x+y=3\end{cases}}\Leftrightarrow x=2,y=1\) 

Vậy GTNN của P là 3/5 khi và chỉ khi x=2,y=1

Bình luận (0)
TB
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
TN
24 tháng 6 2017 lúc 8:35

\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)

Bình luận (0)
DH
24 tháng 6 2017 lúc 8:39

b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-3x-3x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)

\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)

Hay \(P\ge10\) với mọi giá trị của \(x\in R\).

Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)

\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy.....

Chúc bạn học tốt!!!

Bình luận (0)