cho a chia hết cho c và b chia hết cho c.Chứng minh rằng: ma+nb chia hết cho c;ma-nb chia hết cho c;m,n thuộc N
giúp mình với!
Bài 5:Cho a chia hết cho c và b chia hết cho c .Chứng minh rằng ma+nb chia hết cho c , ma - nb chia hết cho c với m,n e N
Bài 6:Chứng minh rằng
a)Tổng của ba số tự nhiên liên tiếp chia hết cho 3.
b) Tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Bài 7:tìm số tự nhiên n biết
a)n+10 chia hết cho n
b)n+16 chia hết cho n+1
c)3n+24 chia hết cho n+2
giúp m với tối m phải nộp r
Giúp mị vs, cần rất gấp
Cho A = 2.4.6.8.10.12 - 40. Hỏi A có chia hết cho 6, 8, 20 không, vì sao?
Khi chia số tự nhiên a cho 36 ta được số dư là 12. Hỏi a có chia hết cho 4, 9, không, vì sao?
Cho a chia hết cho c và b chia hết cho c. Chứng minh rằng : ma+nb chia hết cho c ' ma - nb chia hết cho c với m,n thuộc N
Chứng mình rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp không chia hết cho 5.
Chứng minh rằng :
a) Tổng của ba số chẵn liên tiếp thì chia hết cho 6
b) Tổng của ba số lẻ liên tiếp thì không chia hết cho 6
c) Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
d) P = a + a2 + a3 +....+ a2n chia hết cho a + 1, n thuộc N
e) Nếu a và b chia cho 7 có cùng một số dư thì hiệu a - b chia hết cho 7
Giúp mk lẹ lẹ đi, mk cần rất gấp gấp lắm luôn, mai kiểm tra 45' mà còn mấy bài này ko bt cách giải.
ê bạn là antifan hay ARMY thế hở, mà nếu là ARMY thì sao lại để logo thế kia, còn nếu là anti í thì sao lại có chữ ARMY dưới phần logo và nickname hở, m là gì để tao còn biết.
A chia hết cho 8 và 20, nhưng ko chia hết cho 6
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
3. a) Xét hiệu \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮2.3=6\)( tích của 3 số nguyên liên tiếp)
Tương tự: \(b^3-b⋮6\)và \(c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\Rightarrow a^3+b^3+c^3⋮6\Leftrightarrow a+b+c⋮6\)
b) Ta có: \(30=2.3.5\)và 2,3,5 đôi một nguyên tố cùng nhau.
Theo định lý Fermat: \(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\Rightarrow a^5\equiv a^2\equiv a\left(mod2\right)\)
\(a^3\equiv a\left(mod3\right)\Rightarrow a^5\equiv a^3\equiv a\left(mod3\right)\)
\(a^5\equiv a\left(mod5\right)\)
Theo tính chất của phép đồng dư, ta có:
\(a^5+b^5+c^5\equiv a+b+c\left(mod2\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod3\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod5\right)\)
Do đó: \(a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\). Tức là nếu a+b+c chia hết cho 30 thì ....(đpcm)
cho 3 số tự nhiên a,b,c.Chứng minh rằng nếu a+b+c chia hết cho 3 thì \(a^3+b^3+c^3+3a^2+3b^2+3c^2\)chia hết cho 6
Cho 3 số tự nhiên a,b,c.Chứng minh rằng nếu a+b+c chia hết cho 3 thì\(a^3+b^3+c^3+3a^2+3b^2+3c^2\) chia hết cho 6
Chứng minh rằng a chia hết cho b và b chia hết cho c thì a chia hết cho c
ví dụ :
a = 80 . b = 40 . c = 4
thì : a : b = 80 : 40 = chia hết
b : c = 40 : 4 = chia hết
a : c = 80 : 4 = chia hết
Vậy : a : c = chia hết
Vì : a chia hết cho b nên a = b . k1 ( k1 \(\in\) N ) ( 1 )
Vì : b chia hết cho c nên b = c . k2 ( k2 \(\in\) N ) ( 2 )
Từ ( 1 ) và ( 2 )
=> a = c . k1 . k2
=> a = c . k ( k = k1 . k2 )
=> a chia hết cho c
cho các số nguyên a,b,c.Chứng minh rằng :Nếu 3a + 4b + 5b chia hết cho 11 thì 12a + 5b -2c cũng chia hết cho 11
(Ai làm được đúng và nhanh nhất thì mình tick cho)
Thông ơi ! Bạn và mk 1 đề nè
Đó là bài 5 đúng không
Khảo sát chất lượng học kì I huyện Can Lộc
Nếu đúng thì k mk nha
Hihi
^_^
cho a chia hết cho b, a chia hết cho c và ( b, c) = 1. Chứng minh rằng: a chia hết cho b.c
a chia hết cho b => a = b.m (m \(\in\) N)
a chia hết cho c => a = c.n (n \(\in\) N)
=> b.m = c.n => m = \(\frac{c.n}{b}\). Vì (c;b) = 1 m là số tự nhiên nên n chia hết cho b
=> n = b.q (q \(\in\) N)
=> a = c.n = c.b.q => a chia hết cho b.c
a chia hết cho b => a = bm (m \(\in\) N)
a chia hết cho c => a = cn (n \(\in\) N)
Vậy bm = cn. Do đó n = \(\frac{bm}{c}\)
Mà ƯCLN(b ; c) = 1 và n \(\in\) N nên m chia hết cho c
=> m = ck (k ∈ N)
=> a = bm = bck
Vậy a chia hết cho b.c
Chứng minh rằng nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c