Tìm a để đa thức sau có nghiệm là x= -1
g(x)=2x^2-a*(-5)
h(x)= a.x^3-x^2-x+1
Giải hộ e với ạ!
Bài 1:Tìm giá trị của m để đa thức
a) f(x)=mx^2+2x+8 có một nghiệm là -1
b) g(x)=x4+3m^2x^3+3mx có một nghiệm là 1
Bài 2:Cho đa thức F(x)=1+x+x^2+...+X^201;G(x)=-x-x^3-x^5-...-x^201
a) Chứng tỏ x=-1 là nghiệm của đa thức F(x)
b) Đặt H(x)=F(x)+G(x).Tính H(2)
Ai hỗ trợ e vs ạ,phần này e chưa có học đến
Cho đa thức f(x)=x3-a.x2-9.x+b
a) Tìm a và b để đa thức f(x) có nghiệm là 1 và 3.
b) Tìm tập hợp nghiệm của đa thức f(x) với a và b vừa tìm được ở trên.
a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)
=> \(1-a-9+b=27-9a-27+b\)
=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)
Từ đó tính được b = 9.
b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)
Đa thức f(x) có nghiệm khi:
\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)
Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.
Cho các đa thức: P(x)= 4x2+x-5 và Q(x)= 5x3-2x2+2x-1
a. Tính P(x) + Q(x)
b. Tìm đa thức H(x) thoả H(x)-P(x)= ax với a là hằng số
c. Xác định a để đa thức H(x) có nghiệm là 2
Lời giải:
a)
$P(x)+Q(x)=4x^2+x-5+5x^3-2x^2+2x-1=5x^3+2x^2+3x-6$
b)
$H(x)=P(x)+ax=4x^2+x-5+ax=4x^2+x(a+1)-5$
c) Để $H(x)$ có nghiệm $x=2$
$\Leftrightarrow H(2)=0$
$\Leftrightarrow 4.2^2+2(a+1)-5=0$
$\Leftrightarrow a=\frac{-13}{2}$
a/ Cho f(x)=x+3. Tìm nghiệm của đa thức f(x)
b/ h(x)=2x^2-7mx+4 (m là hằng số). Tìm m để đa thức h(x) có một nghiệm là 2
a x+3=0
x=-3 vậy nghiệm đa thức f(x)=x+3 là -3
b
phần a bạn Nguyễn xuân khải làm đúng rồi nên mình chỉ làm phần b
b)h(2)=2*2^2-7m*2+4=8-14m+4=0
=>4-14m=0
=>14m=4
=>m=\(\frac{2}{7}\)
Vậy m=\(\frac{2}{7}\)
Tìm hệ số a, b của đa thức H(x)=x2+a.x-2b
Biết rằng H(x) có một nghiệm là x= 1 và a+b=5
Vì h(x) có n là 1
H(1) = 1^2+a-2b=0
1+a-2b=0
a=2b-1
Thay a= 2b-1 vào a+b=5 ta có
2b-1+b=5
3b=6
b=2
Mà a+b=5
a+2=5
a=3
Vậy b=2; a=3
1 . Cho f ( x ) = 4x³ - 2x² + x - 5 g ( x ) = x³ + 4 x² - 3x + 2 h ( x ) = -3 x ³ + x² + x - 2 Tính : a ) f ( x ) + g ( x ) b ) g ( x ) - h ( x ) 2 . Tìm nghiệm đa thức : a , 7 - 2x b , ( x + 1 ) ( x - 2 ) ( 2x - 1 ) c , 2x + 5 d , 3x ² + x 3 . Chứng minh rằng các đa thức sau không có nghiệm : a , f ( x ) = x ² + 1 b , ( 2x + 1 ) ² + 3
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
mù mắt xD ghi rõ đề đi bạn ơi !
Dịch:
Cho \(\hept{\begin{cases}f\left(x\right)=4x^3-2x^2+x-5\\g\left(x\right)=x^3+4x^2-3x+2\\h\left(x\right)=-3x^2+x^2+x-2\end{cases}}\)
Tính a) \(f\left(x\right)+g\left(x\right)\)
b) \(g\left(x\right)-h\left(x\right)\)
2. Tìm nghiệm của đa thức
a) \(7-2x\)
b) (x+1)(x-2)(2x-1)
c) 2x+5
d) 3x2+x
3. CMR các đa thức sau không có nghiệm
\(a,f\left(x\right)=x^2+1\)
\(b,\left(2x+1\right)^2+3\)
Tìm A của đa thức F(x):
F(x): A.X^2+5.X-3
Để đa thức có một nghiệm là x= 1/2
cho các đa thức F[x]= x mủ 3 - 2x mủ 2 +3x +1
G[x]= x mủ 3 + x -1
H[x] =2x mủ 2 - 1
a, Tính F[x] -G[x]+H[x]
b, tìm x sao cho F[x] -g[x]+H[x] = o
giúp em với ạ
a)F(x)+G(x)-H(x)=(x^3-2x^2+3x+1)+(x^3+x-1)-(2x^2-1)
=x^3-2x^2+3x+1+x^3+x-1-2x^2+1
=(x^3+x^3)+(-2x^2-2x^2)+3x+(1-1+1)
=2x^3+(-4x^2)+3x+1
cho các đa thức
f(x) = x^2 - (m-1)x+3m-2
g(x)= x^2 -2 (m+1) x-5m+1
h(x) = -2x^2 +mx - 7m +3
Tìm m biết :
a) đa thức f(x) có nghiệm là -1
b) đa thức g(x) có nghiệm là 2
c) đa thức h(x) có nghiệm là -1
d) f(1) = g(2) ; g(1) =h (-2)
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)