Cho 2 tập hợp, A = {\(x\in \mathbb Z\) | \(\left(2x^2-x-3\right)\left(x^2-4\right)=0\)} , B = {\(x\in \mathbb N\) | \(x\le4\)}.
Viết tập hợp bằng cạc liệt kê các phần tử.
Cho 2 tập hợp, A = {\(x\in \mathbb Z\) | \(\left(2x^2-x-3\right)\left(x^2-4\right)=0\)} , B = {\(x\in \mathbb N\) | \(x\le4\)}.
Viết tập hợp bằng cạc liệt kê các phần tử.
(Bấm máy tính tìm nghiệm)
\(A=\left\{-2;-1;2\right\}\)
\(B=\left\{0;1;2;3\right\}\)
Cho \(A = \left\{ {x \in \mathbb{Z}|\;x < 4} \right\},\) \( \,B = \left\{ {x \in \mathbb{Z}|\;\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0} \right\}\)
a) Liệt kê các phần tử của hai tập hợp A và B.
b) Hãy xác định các tập hợp \(A \cap B,A \cup B\) và \(A\,{\rm{\backslash }}\,B\)
a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)
Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)
Ta có:
\(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\end{array} \right.\end{array}\)
Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).
b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{ - 3;0;1\} = B\)
\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\} = A\)
\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{ - 3;0;1\} = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)
Xét tập hợp \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |\,k \in \mathbb{Z}} \right\}\). Với mỗi số thực \(x \in D\), hãy nêu định nghĩa \(\tan x\)
\(\tan x = \frac{{\sin x}}{{\cos x}}\)
Bài 1. (2 điểm)
a) Liệt kê các phần tử của tập hợp $A=\left\{ x\in \mathbb{Z} \, \Big| \, 2{{x}^{2}}+3x+1=0 \right\}$.
b) Cho hai tập hợp $A=\left\{ x\in \mathbb{R} \, \Big| \, |x|>4 \right\}$ và $B=\left\{ x\in \mathbb{R} \, \Big| \, -5\le x-1<5 \right\}$. Xác định tập $X=B\backslash A$.
Trong các tập hợp sau, tập hợp nào là tập hợp rỗng?
\(A = \left\{ {x \in \mathbb{R}|\;{x^2} - 6 = 0} \right\}\);
\(B = \left\{ {x \in \mathbb{Z}|\;{x^2} - 6 = 0} \right\}\)
Ta có: \({x^2} - 6 = 0 \Leftrightarrow x = \pm \sqrt 6 \in \mathbb{R}\)
Vì \(\sqrt 6 \in \mathbb{R}\) và \( -\sqrt 6 \in \mathbb{R}\) nên \( A = \left\{ { \pm \sqrt 6 } \right\}\)
Nhưng \( \pm \sqrt 6 \notin \mathbb{Z}\) nên không tồn tại \(x \in \mathbb{Z}\) để \({x^2} - 6 = 0\)
Hay \(B = \emptyset \).
Xét tập hợp \(E = R\backslash \left\{ {k\pi |k \in \mathbb{Z}} \right\}\). Với mỗi số thực \(x \in E\), hãy nêu định nghĩ \(\cot x\)
\(\cot x = \frac{{\cos x}}{{\sin x}}\)
\(\cot x=\dfrac{\cos x}{\sin x}\)
Cho hai tập hợp:
\(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\}\)
\(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\} \)
Tìm \(A\,{\rm{\backslash }}\,B\) và \(B\,{\rm{\backslash }}\,A\).
Ta có: \(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\} = \{ - 2; - 1;0;1;2;3\} \)
Và \(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\} = \{ - 2;3\} \)
Khi đó:
Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{ - 1;0;1;2\} \).
Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)
Nêu số phần tử của mỗi tập hợp sau:
\(G = \{ x \in \mathbb{Z}|{x^2} -2 = 0\} ,\) \(\mathbb{N}* = \left\{ {1;2;3;..} \right\}.\)
\(G = \{ x \in \mathbb{Z}|{x^2} -2 = 0\} \). Tập hợp G không chứa phần tử nào vì \({x^2} - 2 = 0 \Leftrightarrow x = \pm \sqrt 2 \notin \mathbb{Z}\)
\(\mathbb{N}* = \left\{ {1;2;3;..} \right\}.\): tập hợp N* có vô số phần tử.
Viết các tập hợp sau đây dưới dạng liệt kê các phần tử:
a) \(A = \{ x \in \mathbb{Z}|\;|x|\; < 5\} \)
b) \(B = \{ x \in \mathbb{R}|\;2{x^2} - x - 1 = 0\} \)
c) \(C = \{ x \in \mathbb{N}\;|x\) có hai chữ số\(\} \)
a) A là tập hợp các số nguyên có giá trị tuyệt đối nhỏ hơn 5.
\(A = \{ - 4; - 3; - 2; - 1;0;1;2;3;4\} \)
b) B là tập hợp các nghiệm thực của phương trình \(2{x^2} - x - 1 = 0.\)
\(B = \{ 1; - \frac{1}{2}\} \)
c) C là tập hợp các số tự nhiên có hai chữ số.
\(C = \{ 10;11;12;13;...;99\} \)
Dùng các kí hiệu đoạn, khoảng, nửa khoảng để viết các tập hợp sau đây:
a) \(\left\{ {x \in \mathbb{R}|\; - 2\pi < x \le 2\pi } \right\}\)
b) \(\left\{ {x \in \mathbb{R}|\;\left| x \right| \le \sqrt 3 } \right\}\)
c) \(\{ x \in \mathbb{R}|\;x < 0\} \)
d) \(\left\{ {x \in \mathbb{R}|\;1 - 3x \le 0} \right\}\)
a) Nửa khoảng \(\left( {\left. { - 2\pi ;2\pi } \right]} \right.\)
b) \(\left\{ {x \in \mathbb{R}|\;\left| x \right| \le \sqrt 3 } \right\} = \left\{ {x \in \mathbb{R}|\; - \sqrt 3 \le x \le \sqrt 3 } \right\}\)
Đoạn \(\left[ {\left. { - \sqrt 3 ;\sqrt 3 } \right]} \right.\)
c) Khoảng \(\left( { - \infty ;0} \right)\)
d) \(\left\{ {x \in \mathbb{R}|\;1 - 3x \le 0} \right\} = \left\{ {x \in \mathbb{R}|\;x \ge \frac{1}{3}} \right\}\)
Nửa khoảng \(\left. {\left[ {\frac{1}{3}; + \infty } \right.} \right)\)