2x+3 x²+7x+10'
c)3x^2-7x-10=0
d)2x(x-10)-x+10=0
e)3x^3+7x^2+17x+5=0
f)(2x-1)^2-(x-3)^2=0
g)x^3-5x^2+8x=4
c, \(3x^2-7x+10=0\)
\(\Leftrightarrow3x^2+3x-10x+10=0\)
\(\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{10}{3}\end{matrix}\right.\)
d, \(2x\left(x-10\right)-x+10=0\)
\(\Leftrightarrow2x\left(x-10\right)-\left(x-10\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=\dfrac{1}{2}\end{matrix}\right.\)
bài.rút gọn
a.3x^2-2x(5x+1,5x)+10
b.7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)
c.{2x-3(x-1)-5[x-4(3-2x)+10]}*(-2x)
a) x^4+2x^3-3x^2-8x-4
b) (x-2)(x+2)(x^2-10)=72
c) 2x^3+7x^2+7x+2=0
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4-4x^2+2x^3-8x+x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+2x\left(x^2-4\right)+\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)-72=0\)
Đặt \(t=x^2-4\), ta có :
\(t\left(t-6\right)-72=0\)
\(\Leftrightarrow t^2-6t-72=0\)
\(\Leftrightarrow\left(t-12\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-12=0\\t+6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-16=0\left(tm\right)\\x^2+2=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm4\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;-4\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(2x+1=0\)
hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=-1\)
hoặc \(x=-\frac{1}{2}\)
hoặc \(x=-2\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)
a, \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow\left(x^3+x^2-4x-4\right)\left(x+1\right)=0\)
TH1 : \(x+1=0\Leftrightarrow x=-1\)
TH2 : \(x^3+x^2-4x-4=0\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
=> \(x=-1;x=\pm2\)
b, \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-14x^2+40=72\)
\(\Leftrightarrow x^4-14x^2-32=0\) Đặt \(x^2=t\left(t\ge0\right)\)
Ta có pt mới : \(t^2-14t-32=0\) Tự xử
a) 7x .(2x+10)=0
b)-9x:(2x-10)=0
c) (4-x) (x+3)=0
d) (x+2023) . (x - 2024)=0
a, 7\(x\).(2\(x\) + 10) = 0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\){-5; 0}
b, - 9\(x\) : (2\(x\) - 10) = 0
- 9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-2023; 2024}
a) 2(7x+10)+5=3(2x-3)-9x
b) (x+1)(2x-30=(2x-10)(x+5)
c) 2x+x(x+1)(x-1)=(x+1)(x2-x+1)
d) (x-1)3-x(x+1)2=5x(2-x)-11(x+2)
a: =>14x+20+5=6x-9-9x
=>14x+25=-3x-9
=>17x=-34
=>x=-2
b: =>\(2x^2-30x+2x-30=2x^2+10x-10x-50\)
=>-28x-30=-50
=>-28x=-20
=>x=20/28=5/7
c: =>2x+x^3-x=x^3+1
=>x=1
d: =>x^3-3x^2+3x-1-x(x^2+2x+1)=10x-2x^2-11x-22
=>x^3-3x^2+3x-1-x^3-2x^2-x=-2x^2-x-22
=>-5x^2+2x-1+2x^2+x+22=0
=>-3x^2+3x+21=0
=>x^2-x-7=0
=>\(x=\dfrac{1\pm\sqrt{29}}{2}\)
14x(x+3)-7x^2(3+x)
(2x-5)(3+4x)-4x+10
\(14x\left(x+3\right)-7x^2\left(3+x\right)=\left(x+3\right)\left(14x-7x^2\right)=7x\left(2-x\right)\left(x+3\right)\\ \left(2x-5\right)\left(3+4x\right)-4x+10=\left(2x-5\right)\left(3+4x-2\right)=\left(2x-5\right)\left(4x+1\right)\)
a) x + 2x + 3x = 36
b)7x - 2x - x = 24
c) (x : 5 ) - 10 = 5
d) 7 . ( x + 3 ) = 49
e) ( x - 5 ) . 4 =32
g) 7x - 3 = 25
h) 17 - ( x : 3 ) = 10
a/ x + 2x + 3x = 36
=> 6x = 36
=> x = 6
Vậy ..
b/ 7x - 2x - x = 24
=> 4x = 24
=> x = 6
Vậy ...
c/ (x : 5) - 10 = 5
=> x : 5 = 15
=> x = 75
Vậy ...
d/ 7. (x+3) = 49
=> x + 3 = 7
=> x = 4
Vậy ....
e/ (x - 5) . 4 = 32
=> x - 5 = 8
=> x = 13
Vậy. ..
g/ 7x - 3 = 25
=> 7x = 28
=> x = 4
Vậy ...
h/ 17 - (x :3) = 10
=> x : 3 = 17 - 10
=>x : 3 = 7
=> x = 21
Vậy ..
a) x + 2x + 3x = 36
=> 6x = 36
=> x = 6
b)7x - 2x - x = 24
=> 4x = 24
=> x = 6
c) (x : 5 ) - 10 = 5
=> x : 5 = 15
=> x = 3
d) 7 . ( x + 3 ) = 49
=> x + 3 = 7
=> x = 4
e) ( x - 5 ) . 4 =32
=> x - 5 = 8
=> x = 3
g) 7x - 3 = 25
=> 7x = 28
=> x = 4
h) 17 - ( x : 3 ) = 10
=> x : 3 = 7
=> x = 21
a) x + 2x + 3x = 36
=> 6x = 36 => x = 36 : 6 = 6.
b) 7x - 2x -x = 24
=> 4x = 24 => x = 24 : 4 = 6.
c)(x : 5) - 10 = 5
=> x : 5 = 5 + 10 = 15
=> x = 15 x 5 = 75.
d) 7. (x + 3) = 49
=> x + 3 = 49 : 7 = 7
=> x = 7 - 3 = 4.
e)(x - 5) . 4 = 32
=> x - 5 = 32 : 4 = 8
=> x = 8 + 5 = 13.
g) 7x - 3 = 25
=> 7x = 25 + 3 = 28 => x = 28 : 7 = 4
h) 17 - ( x : 3 ) = 10
=> x : 3 = 17 - 10 = 7
=> x = 7.3 = 21
Tìm xEZ, biết
a) 7x .(2x+10)=0
b)-9x:(2x-10)=0
c) (4-x) (x+3)=0
d) (x+2023) . (x - 2024)=0
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\in\) {-2023; 2024}
Tính: a,x²-5x+6/ x²+7x+12 : x²-4x+4/ x²+3x b,x²+2x-3/ x²+3x-10 : x²+7x+12/ x²-9x+14
a: \(\dfrac{x^2-5x+6}{x^2+7x+12}:\dfrac{x^2-4x+4}{x^2+3x}\)
\(=\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x+3\right)\left(x+4\right)}\cdot\dfrac{x\left(x+3\right)}{\left(x-2\right)^2}\)
\(=\dfrac{x\left(x-3\right)}{\left(x-2\right)\left(x+4\right)}\)
b: \(\dfrac{x^2+2x-3}{x^2+3x-10}:\dfrac{x^2+7x+12}{x^2-9x+14}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x+5\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x-7\right)}{\left(x+3\right)\left(x+4\right)}\)
\(=\dfrac{\left(x-1\right)\left(x-7\right)}{\left(x+5\right)\left(x+4\right)}\)
bài 1:
a)7x(x2-7x+3) b)(x+6)(x-7)
c)(x-8)2 d) (3x+2)2
e)(x-4)(x+4)-(5-x)2
Bài 2:
a)2(x-7)-9=10 b)(2x-5)2-x(4x-3)=2x+50
\(1,\\ a,=7x^3-49x^2+21x\\ b,=x^2-x-42\\ c,=x^2-16x+64\\ d,=9x^2+12x+4\\ e,=x^2-16-25+10x-x^2=10x-41\\ 2,\\ a,\Rightarrow2\left(x-7\right)=19\\ \Rightarrow x-7=\dfrac{19}{2}\Rightarrow x=\dfrac{33}{2}\\ b,\Rightarrow4x^2-20x+25-4x^2+3x-2x=50\\ \Rightarrow-19x=25\Rightarrow x=-\dfrac{25}{19}\)