Những câu hỏi liên quan
HS
Xem chi tiết
LA
Xem chi tiết
TA
26 tháng 4 2016 lúc 20:27

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

Bình luận (0)
DD
Xem chi tiết
MM
Xem chi tiết
ST
Xem chi tiết
LM
Xem chi tiết
H24
13 tháng 7 2018 lúc 15:49

Bài 2  : 

a)    C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )

<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1

<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1 

Đặt t = n2 + 5n + 5

Suy ra : C = ( t - 1 ).( t + 1 ) + 1

         => C = t2 - 1 + 1

       <=> C = t2    hay C = ( n2 + 5n + 5 )2

Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương 

                                                                             ( đpcm )

b)     E = n2 + ( n + 1 )2 + n( n + 1 )2

 <=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2

 <=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2

 <=> E = [ n( n + 1 ) + 1 ]2

 <=> E = ( n2 + n + 1 )2

Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương

                                                                        ( đpcm )

Bình luận (0)
ND
Xem chi tiết
NM
14 tháng 1 2022 lúc 13:13

B = 3^0+3^1+......+3^50

3B=3^1+3^2+.....+3^51

2B=3^51-1

    =3^50x3-1

    =9^25x3-1

Vì luỹ thừa bậc lẻ của 9 luôn có tận cùng = 9 => tận cùng 2B= 6 => tận cùng B=3

Số chính phương chỉ có tận cùng là 0;1;4;5;6;9 nên B ko phải số chính phương (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AT
18 tháng 7 2015 lúc 21:35

Bài 1:

Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.

Ta có: (3x)2 = 9x2 chia hết cho 3

           (3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1

           (3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1

Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.

Bài 2 : Tương tự

 

Bình luận (0)
NM
8 tháng 12 2016 lúc 21:31

Bài 1:

Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 

Bình luận (0)
NL
Xem chi tiết
VH
7 tháng 10 2017 lúc 19:04

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

Bình luận (2)
TV
22 tháng 1 2023 lúc 9:39

Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)

<=> 9=m2-n2

<=> 9=(m-n)(m+n)

Vì n thuộc N => m-n thuộc Z, m+n thuộc N

=> m-n,m+n thuộc Ư(9)

mà m+n>m-n

nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)

 Vậy A là SCP <=>n=4

Bình luận (0)
NK
Xem chi tiết