Những câu hỏi liên quan
HA
Xem chi tiết
FT
Xem chi tiết
NN
Xem chi tiết
ST
Xem chi tiết
H24
19 tháng 6 2018 lúc 21:31

ban lop 9 a ?

Bình luận (0)
HM
20 tháng 6 2018 lúc 6:50

Cậu ấy lớp 9 đấy .

Bình luận (0)
KK
11 tháng 3 2020 lúc 11:27

mk mới lớp 6

hổng bt làm đâu

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
TN
17 tháng 5 2016 lúc 19:01

ta có:

\(x\left(\sqrt{2011}+\sqrt{2010}\right)+y\left(\sqrt{2011}-\sqrt{2010}\right)=x\sqrt{2011}+x\sqrt{2010}+y\sqrt{2011}-y\sqrt{2010}\)

 pt tương đương với:

\(\left(x+y\right)\sqrt{2011}+\left(x-y\right)\sqrt{2010}=\sqrt{2011^3}+\sqrt{2010^3}\)

vì x,y là số hữu tỉ nên

\(\hept{\begin{cases}\sqrt{2011}\left(x+y\right)=\sqrt{2011^3}\\\sqrt{2010}\left(x-y\right)=\sqrt{2010^3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=2011\\x-y=2010\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{4021}{2}\\y=\frac{1}{2}\end{cases}}\)   

                                                                                               

Bình luận (0)
OO
17 tháng 5 2016 lúc 12:05

tích trước trả lời sau

Bình luận (0)
NV
17 tháng 5 2016 lúc 14:17

là sao bạn???

Bình luận (0)
LS
Xem chi tiết
H24
Xem chi tiết
H24
23 tháng 10 2018 lúc 19:26

\(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)

\(\Leftrightarrow\sqrt{2-\sqrt{3}}=\sqrt{3x}-\sqrt{y}\Leftrightarrow2-\sqrt{3}=3x+y-2\sqrt{3xy}\)

\(\Leftrightarrow3x+y-2=2\sqrt{3xy}-\sqrt{3}\)(1)

Để phương trình đầu có nghiệm hữu tỉ=> phương trình (1) có nghiệm hữu tỉ x,y

\(\Rightarrow\hept{\begin{cases}2\sqrt{3xy}-\sqrt{3}=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2\sqrt{xy}-1=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=\frac{1}{4}\\y=2+3x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(2-3x\right)=\frac{1}{4}\\y=2-3x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}12x^2-8x+1=0\\y=2-3x\end{cases}}\)

phân tích thành nhân tử r làm tiếp nhé

Bình luận (0)
NN
Xem chi tiết
PL
11 tháng 6 2019 lúc 21:00

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Rightarrow\left(x-1\right)-2\sqrt{x-1}+1\)\(+\left(y-2\right)-4\sqrt{y-2}+4\)\(+\left(z-3\right)-6\sqrt{z-3}+9\)\(=0\)

\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)

Bình luận (0)
TD
11 tháng 6 2019 lúc 21:04

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-2\sqrt{y-2}.2+4\right)+\left(z-3-2\sqrt{z-3}.3+9\right)=0\)

\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)( 1 )

Mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)

từ đó tìm được : \(x=2;y=6;z=12\)

Bình luận (0)
DH
11 tháng 6 2019 lúc 21:04

ĐKXĐ \(x\ge1,y\ge2,z\ge3\)

Phương trình đã cho tương đương với :

\(x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0.\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

Mà \(\left(\sqrt{x-1}-1\right)^2\ge0;\left(\sqrt{y-2}-2\right)^2\ge0;\left(\sqrt{z-3}-3\right)^2\ge0\)

Suy ra \(\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=1\\y-2=4\\z-3=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}\left(tmđk\right).}\)

Bình luận (0)
NA
Xem chi tiết

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

Bình luận (1)
 Khách vãng lai đã xóa
DH
12 tháng 7 2021 lúc 19:35

ĐK: \(x\ge1,y\ge2,z\ge3\).

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)(thỏa mãn)

Bình luận (0)
 Khách vãng lai đã xóa
LD
12 tháng 7 2021 lúc 19:48

ĐK : x ≥ 1 ; y ≥ 2 ; z ≥ 3

\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\left(tm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa