Tìm các số x, y thỏa mãn đẳng thức:
a, \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
b, \(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}=\dfrac{1}{2}\left(x+y+z\right)\)
1) rút gọn biểu thức sau :
a) \(\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\) b) \(\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\) c ) \(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
d) \(\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\) e) \(\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{y}}\) ( với x>0 , y>0 )
f) \(\sqrt{8-2\sqrt{15}}+\sqrt{5}+\sqrt{3}\) g) \(\sqrt{9-2\sqrt{4}}-\sqrt{9+2\sqrt{14}}\)
Hãy so sánh hai biểu thức sau:
\(x=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(y=\dfrac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\dfrac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
giả sử x,y\(\ge0\) thỏa mãn\(x^3+y^3+xy=x^2+y.\)Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=\dfrac{1+\sqrt{x}}{2+\sqrt{y}}+\dfrac{2+\sqrt{x}}{1+\sqrt{y}}\)
1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
Cho 3 số x y z thỏa mãn x+y+z=xyz.Cm:\(\dfrac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\dfrac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+z^2}-\sqrt{1+x^2}}{zx}+\dfrac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{yz}=0\)
cho x,y là số thức dương thỏa mãn \(\sqrt{x+3}\) +\(\sqrt{y+3}\) =1. Tìm GTLN của A =\(\sqrt{x}\) +\(\sqrt{y}\)
Cho 3 số dương x,y,z thỏa mãn x + y + z = xyz. Cmr:
\(A=\frac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\frac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{xz}+\frac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+y^2}}{xy}=0\)
Cho \(x,y\ge0\) thỏa mãn \(x+y=2\sqrt{3}.\)Tìm Max:
\(P=\left(x^4+1\right)\left(y^4+1\right)\)