cho hình bình hành abcd. gọi e là trung điểm của ab, f là trung điểm của cd. chứng minh af=cd
Bài 10: Cho hình bình hành ABCD. Biết  = 1240.
a) Tính các góc của hình bình hành;
b) Gọi E, F lần lượt là trung điểm của AB và CD. Chứng minh: AF // CE;
c) Gọi O là trung điểm của AC. Chứng minh: E và F đối xứng nhau qua O.
b: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: FA//CE
Cho hình bình hành ABCD Gọi E là trung điểm của AB F là trung điểm của CD Chứng minh rằng a de = BF B Chứng minh rằng AB CD và e f đồng quy tại một điểm c b d cắt AF và Be lần lượt ở M và N Chứng minh rằng BM = MN = mn
a: BE=AB/2
DF=DC/2
mà AB=DC
nên BE=DF
Xét tứ giác BEDF có
BE//DF
BE=DF
=>BEDF là hình bình hành
=>DE=BF
b: BEDF là hbh
=>BD cắt EF tại trung điểm của mỗi đường(1)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
Cho hình bình hành ABCD,gọi E là trung điểm AB,F là trung điểm của CD,chứng minh AECF là hình bình hành.gọi M là giao điểm của AF và BD.N là giao điểm CE và BD,chứng minh: +,DM+MN=NB +,chứng minh:AC,BD,EF đồng quy
Ta có:
tam giác AEB = tam giác CFD
=> \(\widehat{AEB}=\widehat{CFD}=\widehat{EDF}\left(slt\right)\)
mà 2 goác có vị trí đồng vị
=> EB//DF
Mặt khác: ED//BF
=> EBFD là h.b.h
Ta có:
Tam giác END= tam giác FMB
=> DN=BM
=> DN+MN=BM+MN=BN
Ta có:
Vì tứ giác ABCD và EBFC đều là h.b.h
=> AC, BD, EF đồng quy tại trung điểm của EF
Cho hình hình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng: EMNF là hình bình hành
+) Ta có:
AE = 1/2 AB; CF = 1/2. CD ( vì E và F lần lượt là trung điểm của AB, CD).
Và AB = CD (tính chất hình bình hành)
Suy ra: AE = CF
+) Lại có: AB // CD ( vì ABCD là hình bình hành) nên AE //CF
Tứ giác AECF có hai cạnh đối AE, CF song song và bằng nhau nên là hình bình hành
⇒ AF //CE hay EN // FM (1)
Xét tứ giác BFDE ta có:
AB // CD (gt) hay BE // DF
BE = 1/2 AB (gt)
DF = 1/2 CD (gt)
AB = CD (tính chất hình bình hành)
Suy ra: BE = DF
Tứ giác BFDE là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau) ⇒ BF//DE hay EM // FN (2)
Từ (1) và (2) suy ra tứ giác EMFN là hình bình hành (theo định nghĩa hình bình hành)
cho hình bình hành abcd gọi e và f lần lượt là trung điểm của ab và cd
chứng minh af//cd
làm ơn
chắc là AF//CD Á
af//cd có nghĩa là gì vậy
af//dc thì khác j af//cd
trời ơi trời
Cho hình bình hành ABCD có AB = 2AD. Gọi E là trung điểm AD, F là trung điểm CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. AECF là hình bình hành, AEDF là hình bình hành. Chứng minh rằng MN = EF
Ai giúp e vs ạ 8h30 e phải nộp rùi please
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Hình bình hành:
1. Cho tứ giác ABC, gọi E, F là trung điểm của AB và CD; M, N, P, Q lần lượt là trung điểm các đoạn AF, CE, BF và DE. C Chứng minh rằng MNPQ là hình bình hành.
2. Cho hình bình hành ABCD. Các điểm E, F thuộc đường chéo AC sao cho AE = EF = FC. Gọi M là giao điểm của BF và CD; N là giao điểm của DE và AB. Chứng minh rằng:
a. M, N theo thứ tự là trung điểm của CD, AB.
b. EMFN là hình bình hành.
Cho hình bình hành ABCD. Gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh rằng: DE = BF
Ta có: AB = CD (tính chất hình bình hành)
EB = 1/2 AB (gt)
FD = 1/2 CD (gt)
Suy ra: EB = FD (1)
Mà AB // CD (gt)
⇒ BE // FD (2)
Từ (1) và (2) suy ra tứ giác BEDF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
⇒ DE = BF (tính chất hình bình hành)
Cho hình bình hành ABCD ( AB > AD). gọi AF là trung điểm của CD và AB . Đường chéo BD cắt AE, AC,CF lần lượt tạo N,O,M
a) chứng minh AECF là hình bình hành
b) chứng mính ba điểm B,E,F thẳng hàng
Lời giải:
a. Vì $ABCD$ là hình bình hành nên $AB=CD$
$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$
Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$
Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.
b.
B, E,F thẳng hàng??? Bạn xem lại đề.
cho tứ giác ABCD gọi E và F là trung điểm của các cạnh AB và CD Gọi M,N,P,Q lần lượt là trung điểm của các đoạn AF,CE,BF,DE. Chứng minh tứ giác MNPQ là hình bình hành