Những câu hỏi liên quan
TT
Xem chi tiết
TM
20 tháng 7 2023 lúc 11:11

\(M=x^2+4x+10\)

\(=\left(x^2+4x+4\right)+6\)

\(=\left(x+2\right)^2+6\ge6\).

Vậy: \(MinM=6\). Dấu đẳng thức xảy ra khi và chỉ khi \(x+2=0\Leftrightarrow x=-2.\)

Bình luận (0)
VT
20 tháng 7 2023 lúc 11:15

`M = x^2 + 4x + 4 + 6 = (x+2)^2 + 6 >= 0 + 6  =6`.

ĐTXR `<=> x + 2 = 0 <=> x = -2`.

Vậy Min M = `6 <=> x = -2`.

Bình luận (0)
KS
Xem chi tiết
TM
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Bình luận (0)
 Khách vãng lai đã xóa
TM
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Bình luận (0)
 Khách vãng lai đã xóa
US
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
2 tháng 7 2019 lúc 7:00

Điều kiện x ≠ 2 và x  ≠  0

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì x - 1 2 ≥ 0 nên x - 1 2 + 2 ≥ 2 với mọi giá trị của x.

Khi đó giá trị nhỏ nhất của biểu thức bằng 2 khi x = 1.

Vậy biểu thức đã cho có giá trị nhỏ nhất bằng 2 tại x = 1.

Bình luận (0)
TA
Xem chi tiết
DT
4 tháng 7 2016 lúc 21:12

B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)

\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)

Bình luận (0)
DT
4 tháng 7 2016 lúc 21:04

\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Bình luận (0)
DT
4 tháng 7 2016 lúc 21:06

B2: \(\Rightarrow16x^2-8x-\left(16x^2-8x+1\right)-13\Rightarrow16x^2-8x-16x^2+8x-1-13\Rightarrow-14\)

Bình luận (0)
TA
Xem chi tiết
DN
22 tháng 7 2016 lúc 16:29

a) gtnn bạn ạ

GTNN A=  -4 vì 2/3x-1/ >= 0

b) gtln bạn ạ

GTLN B = 10 vì 4/x-2/ >=0

Bình luận (0)
TA
22 tháng 7 2016 lúc 17:55

A= -4; B= 10

Bình luận (0)
TC
Xem chi tiết
TC
30 tháng 8 2021 lúc 9:09

undefined

Bình luận (0)
NT
30 tháng 8 2021 lúc 15:01

a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x^2-4x+3+11\)

\(=x^2-4x+4+8\)

\(=\left(x-2\right)^2+8\ge8\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(B=-4x^2+4x+5\)

\(=-\left(4x^2-4x+1-6\right)\)

\(=-\left(2x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bình luận (0)
XP
Xem chi tiết
NT
20 tháng 7 2021 lúc 18:36

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

Bình luận (0)
VN
Xem chi tiết
ND
Xem chi tiết
MA
25 tháng 9 2016 lúc 19:08

\(A=10x^2+6xy+y^2-4x+3\)

\(A=9x^2+6xy+y^2+x^2-4x+4-1\)

\(A=\left(3x+y\right)^2+\left(x-2\right)^2-1\)

Có: \(\left(3x+y\right)^2+\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(3x+y\right)^2+\left(x-2\right)^2-1\ge-1\)

Dấu = xảy ra khi: \(\left(3x+y\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(3x+y\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x-2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}6+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}y=-6\\x=2\end{cases}}\)

Vậy: \(Min_A=-1\) tại \(\hept{\begin{cases}y=-6\\x=2\end{cases}}\)

Bình luận (0)
NX
Xem chi tiết
TC
13 tháng 7 2021 lúc 20:20

undefined

Bình luận (0)
NT
13 tháng 7 2021 lúc 23:30

a) Ta có: \(\left|x-2\right|\ge0\forall x\)

\(\Leftrightarrow\left|x-2\right|+15\ge15\forall x\)

Dấu '=' xảy ra khi x=2

b) Ta có: \(\left|x-5\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-5\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-5\right|-4\ge-4\forall x\)

Dấu '=' xảy ra khi x=5

Bình luận (0)