Những câu hỏi liên quan
LQ
Xem chi tiết
XO
4 tháng 9 2020 lúc 16:31

Ta có : B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\)

=> 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)

Khi đó 3B - B = \(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)

=> 2B = \(1-\frac{1}{3^{2005}}\)

=> B = \(\frac{1}{2}-\frac{1}{3^{2005}.2}< \frac{1}{2}\left(\text{ĐPCM}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
4 tháng 9 2020 lúc 16:32

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+........+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+........+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(\Rightarrow3B-B=1-\frac{1}{3^{2005}}\)

\(\Rightarrow2B=1-\frac{1}{3^{2005}}\)\(\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}\)

Vì \(1-\frac{1}{3^{2005}}< 1\)\(\Rightarrow\frac{1-\frac{1}{3^{2005}}}{2}< \frac{1}{2}\)

hay \(B< \frac{1}{2}\)( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
NC
21 tháng 1 2017 lúc 18:29

ko bit

Bình luận (0)
NQ
9 tháng 1 2022 lúc 13:35

Ko biết

Bình luận (0)
 Khách vãng lai đã xóa
VV
Xem chi tiết
VT
14 tháng 1 2016 lúc 12:03

Ta có:3B\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+...+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}\)

B=\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+..+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}+\frac{1}{3}^{2005}\)

\(\Rightarrow\)2B=1-\(\frac{1}{3}^{2005}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}<\frac{1}{2}\)

\(\Rightarrow\)B<\(\frac{1}{2}\)

Bình luận (0)
LH
Xem chi tiết
HQ
6 tháng 3 2017 lúc 9:39

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Leftrightarrow2B=3\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(\Leftrightarrow2B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\) (Đpcm)

Bình luận (1)
H24
6 tháng 3 2017 lúc 8:34

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+..+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ \)

\(C=3B=1+\dfrac{1}{3}+..+\dfrac{1}{3^{2004}}\)

\(C-B=1-\dfrac{1}{3^{3005}}\)

\(B=\dfrac{1}{2}-\dfrac{1}{2.3^{2005}}< \dfrac{1}{2}\)

Bình luận (0)
TL
21 tháng 7 2017 lúc 12:09

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2005}}\)

\(3B=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2005}}\right)\)

\(3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2004}}\)

\(3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2005}}\right)\)

\(2B=1-\dfrac{1}{3^{2005}}\)

\(B=\dfrac{1-\dfrac{1}{3^{2005}}}{2}\\ \)

\(\text{Mà }1-\dfrac{1}{3^{2005}}< 1\\ \Rightarrow\dfrac{1-\dfrac{1}{3^{2005}}}{2}< \dfrac{1}{2}\\ \Rightarrow B< \dfrac{1}{2}\left(ĐPCM\right)\)

Vậy \(B< \dfrac{1}{2}\)

Bình luận (0)
VQ
Xem chi tiết
TD
27 tháng 4 2017 lúc 20:45

Ta có :

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)

\(2B=1-\frac{1}{3^{2005}}< 1\)

\(\Rightarrow\frac{2B}{2}=\frac{1-\frac{1}{3^{2005}}}{2}< \frac{1}{2}\)

\(\Rightarrow B< \frac{1}{2}\)

Bình luận (0)
PK
Xem chi tiết
PQ
7 tháng 1 2016 lúc 13:44

.........................................

Bình luận (0)
LH
Xem chi tiết
CU
30 tháng 1 2016 lúc 9:50

làm ơn tách ra giùm mk

Bình luận (0)
WF
Xem chi tiết
CG
19 tháng 6 2018 lúc 14:26

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(\Rightarrow3B-B=1-\frac{1}{3^{2005}}\)

\(\Rightarrow2B=1-\frac{1}{3^{2005}}\)

\(\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}\)

Bình luận (0)
H24
Xem chi tiết
HH
19 tháng 6 2018 lúc 16:37

Giải:

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\)

\(\Leftrightarrow\dfrac{1}{3}B=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}...+\dfrac{1}{3^{2005}}+\dfrac{1}{3^{2006}}\)

\(\Leftrightarrow B-\dfrac{1}{3}B=\dfrac{1}{3}-\dfrac{1}{3^{2006}}\)

\(\Leftrightarrow\dfrac{2}{3}B=\dfrac{1}{3}-\dfrac{1}{3^{2006}}\)

\(\Leftrightarrow B=\dfrac{\dfrac{1}{3}-\dfrac{1}{3^{2006}}}{\dfrac{2}{3}}\)

\(\Leftrightarrow B=\dfrac{1-\dfrac{1}{3^{2005}}}{2}\)

\(\Leftrightarrow B=\dfrac{\dfrac{3^{2005}-1}{3^{2005}}}{2}\)

\(\Leftrightarrow B=\dfrac{3^{2005}-1}{2.3^{2005}}\)

Vậy ...

Bình luận (0)
TN
19 tháng 6 2018 lúc 18:31

Violympic toán 8Chúc bn học tốt!

Bình luận (0)