Những câu hỏi liên quan
TV
Xem chi tiết
HL
Xem chi tiết
NT
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Bình luận (0)
LD
Xem chi tiết
NT
18 tháng 3 2023 lúc 0:17

\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)

Dấu = xảy ra khi x=-1

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
8 tháng 11 2018 lúc 8:10

Bình luận (0)
HN
Xem chi tiết
H24
10 tháng 7 2021 lúc 9:35

undefined

Bình luận (0)
NN
Xem chi tiết
OP
31 tháng 1 2022 lúc 9:51

bạn ơi x+1 hay \(x^2+1\) vậy pạn??

Bình luận (3)
OP
31 tháng 1 2022 lúc 10:09

Đặt T là biểu thức cần tìm 

Ta có:

\(\Leftrightarrow Tx^2+Tx+T-x-1=0\)

\(\Leftrightarrow Tx^2+x\left(T-1\right)+T-1=0\)

TH1: T = 1 => x= 0

TH2: \(T\ne0\)

delta \(\ge0\Leftrightarrow\left(T-1\right)^2-4.T.\left(T-1\right)\ge0\)

\(\Leftrightarrow T^2-2T+1-4T^2+4T\Leftrightarrow-3T^2+2T+1\ge0\Leftrightarrow-\dfrac{1}{3}\le T\le1\)

\(T_{min}=-\dfrac{1}{3}\Rightarrow\) thế vào ra x

\(T_{max}=1\Rightarrow\) thế vào ra x

 

Bình luận (2)
XO
31 tháng 1 2022 lúc 10:14

*) Tìm Max \(P=\dfrac{x+1}{x^2+x+1}=\dfrac{x^2+x+1-x^2}{x^2+x+1}=1-\dfrac{x^2}{x^2+x+1}\le1\)

"=" xảy ra <=> x = 0

 

Bình luận (0)
ND
Xem chi tiết
TM
5 tháng 11 2017 lúc 15:17

GTNN là gì z.tui ko  hiểu nên ko giải được!

Bình luận (0)
GN

GTNN là giá trị nhỏ nhất

Bình luận (0)
NJ
6 tháng 4 2018 lúc 19:38

giá trị nhỏ nhất

Bình luận (0)
H24
Xem chi tiết
H24
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Bình luận (0)