Tìm x , y thuộc Z biết :
\(2y+\frac{1}{7}=\frac{1}{y}\)
Cho x,y,z thuộc Z thỏa mãn \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\).
Tìm GTLN của A=\(\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)
Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)
\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)
Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)
\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)
Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)
Đẳng thức xảy ra khi x = y = z = 1
Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)
Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)
=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)
=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)
Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)
Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)
Vậy MaxA=3 đạt được khi x=y=z=1
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1.
a)Ta có: 3.x=y.7
3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau
suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)
7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau
suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)
(y khác 0 nên k khác 0)
vậy: x=2.k
y=5.k
(k thuộc tập hợp Z và k khác 0)
x và y thuộc Z. \(Biết\frac{x}{8}=\frac{1}{2y+1}\left(xkhác\frac{-1}{2}\right)\)
Tìm x,y
a) tìm x,y,z biết rằng \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
a) vì y+z+1/x = x+z+2/y = x+y-3/z = 1/x+y+z
=>
y+z+1/x = x+z+2/y = x+y-3=y+z+1+x+z+2+x+y-3/x+y+z = 2x+2y+2z/x+y+z = 2
=> 2 = 1/ x+y+z => x+y+z=1/2
sau đó áp dụng tính chất dãy tỉ số = hau
cho x,y,z là 3 số thực dương, biết xyz=1. tìm GTLN của biểu thức
P = \(\frac{x^2y^2}{x^2y^2+x^7+y^7}+\frac{y^2z^2}{y^2z^2+y^7+z^7}+\frac{x^2z^2}{x^2z^2+x^7+z^7}\)
ap dung bdt \(x^{m+n}+y^{m+n}\ge x^my^n+x^ny^m\) (bn tu cm )
\(\Rightarrow x^7+y^7=x^{3+4}+y^{3+4}\ge x^3y^4+x^4y^3\)
\(\Rightarrow\frac{x^2y^2}{x^2y^2+x^7+y^7}\le\frac{x^2y^2}{x^2y^2\left(1+xy^2+x^2y\right)}=\frac{1}{1+x^2y+y^2x}=\frac{1}{xyz+x^2y+y^2x}=\frac{1}{xy\left(x+y+z\right)}=\)
=\(\frac{z}{xyz\left(x+y+z\right)}=\frac{z}{x+y+z}\)
ttu \(P\le\frac{x+y+z}{x+y+z}=1\) đầu = xảy ra khi x=y=z=1
Tìm x,y,z thuộc Z biết : \(2x+\frac{1}{7}=\frac{1}{y}\)
\(2x+\frac{1}{7}=\frac{1}{y}< =>\frac{2xy+y}{7y}=\frac{7}{7y}.\)(đk :y khác 0)
\(< =>y\left(2x+1\right)=7=>2x+1=\frac{7}{y}.\)
\(dox,y\varepsilon Z=>2x+1\in Z=>7⋮y=>y\inƯ\left(7\right)=\left[+-1;+-7\right]\)
\(=>x\in\left[3;-4;0;-1\right]\)
2x+1/7=1/y => 14x+1/7=1/y =>(14x+1)y=7 do x,y thuộc z nên 7chia hết cho 14x+1 Mà 14x+1 chia 14 dư 1 hoặc dư -13 nên 14x+1=1 =>x=0 thay vào tìm được y=7
tìm x,y thuộc Z biết:\(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{7}\)
11. tìm x,y thuộc Z thỏa mãn
a, xy-3x+2y=7
b, xy-5x+4y=9
c, 2xy+3x+7y=11
d, \(\frac{1}{x}+\frac{1}{y}=\frac{1}{11}\)(x;y thuộc N*)