Những câu hỏi liên quan
TW
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
BH
22 tháng 2 2022 lúc 16:36

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow xy+yz+xz=0\)

A=\(xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}-\dfrac{3}{xyz}+\dfrac{3}{xyz}\right)=xyz.\dfrac{3}{xyz}=3\)

bạn tự chứng minh \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}-\dfrac{3}{xyz}=0\) nha

đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b;\dfrac{1}{z}=c\)

bài toán thành \(a^3+b^3+c^3-3abc=0\) nha

 

 

Bình luận (1)
TW
Xem chi tiết
FT
Xem chi tiết
ND
Xem chi tiết
LN
14 tháng 7 2017 lúc 20:51

sao cho biết mà không có phần chứng minh

Bình luận (0)
ND
19 tháng 7 2017 lúc 20:57

Chứng minh là tìm x, y ,z mà bạn :)

Bình luận (0)
AH
6 tháng 7 2018 lúc 16:07

❤ѕѕѕσиɢσкυѕѕѕ❤

Bình luận (0)
BA
Xem chi tiết
LT
4 tháng 6 2019 lúc 16:33

Áp dụng BĐT Cauchy-Schwarz Engel, ta được:

T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))

Áp dụng BĐT AM-GM , ta được:

T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)

Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673

Bình luận (0)
CD
4 tháng 6 2019 lúc 20:35

\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)

=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)

=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)

xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)

Bình luận (0)
VA
24 tháng 4 2020 lúc 18:24

hello

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
H24
Xem chi tiết