( \(-\dfrac{3}{20}-\left(-1,2\right)\)
\(Đổi\left(-1,2\right)\) ra phân số rồi tính ạ
\(tínhhợplí:\left(1,2-\sqrt{\dfrac{1}{4}:1\dfrac{1}{20}+\left|-\dfrac{3}{4}\right|-\left(-\dfrac{3}{2}\right)^2}\right)\)
\(\left(\sqrt{\dfrac{1}{4}-1,2}\right):1\dfrac{1}{20}-\left(-\dfrac{5}{2}\right)^2+\left|1,25-\dfrac{3}{4}\right|\)
\(=\left(\dfrac{1}{2}-\dfrac{6}{5}\right):\dfrac{21}{20}-\dfrac{25}{4}+\dfrac{1}{2}=\dfrac{-7}{10}\cdot\dfrac{20}{21}-\dfrac{23}{4}\)
\(=\dfrac{-2}{3}-\dfrac{23}{4}=\dfrac{-8-69}{12}=-\dfrac{77}{12}\)
(\(\sqrt{\dfrac{1}{4}}\) - 1,2) : 1\(\dfrac{1}{20}\) - (- \(\dfrac{5}{2}\))2 + \(\left|1,25-\dfrac{3}{4}\right|\)
\(=\left(\dfrac{1}{2}-\dfrac{6}{5}\right):\dfrac{21}{20}-\dfrac{25}{4}+\dfrac{1}{2}\)
\(=\dfrac{-7}{10}\cdot\dfrac{20}{21}-\dfrac{25}{4}+\dfrac{2}{4}\)
\(=\dfrac{-2}{3}-\dfrac{23}{4}=\dfrac{-8-69}{12}=\dfrac{-77}{12}\)
\(\left(\sqrt{\dfrac{1}{4}}-1,2\right):1\dfrac{1}{20}-\left(-\dfrac{5}{2}\right)^2+\left|1,25-\dfrac{3}{4}\right|\)
\(=-\dfrac{7}{10}:\dfrac{21}{20}-\dfrac{25}{4}+\left|\dfrac{1}{2}\right|\)
\(=-\dfrac{7}{10}.\dfrac{20}{21}-\dfrac{25}{4}+\dfrac{1}{2}\)
\(=-\dfrac{2}{3}-\dfrac{25}{4}+\dfrac{1}{2}\)
\(=-\dfrac{77}{12}\)
Giúp mk vs !!!
Bài 1. Tính giá trị các biểu thức sau:
A = -1,7 . 2,3 + 1,7 . (-3,7) - 1,7 . 3 - 0,17 : 0,1
B = \(2\dfrac{3}{4}.\left(-0,4\right)-1\dfrac{2}{3}.2,75+\left(-1,2\right):\dfrac{4}{11}\)
C = \(\dfrac{\left(2^3.5.7\right)\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
Bài 1:
a) Ta có: \(A=-1.7\cdot2.3+1.7\cdot\left(-3.7\right)-1.7\cdot3-0.17:0.1\)
\(=1.7\cdot\left(-2.3\right)+1.7\cdot\left(-3.7\right)+1.7\cdot\left(-3\right)+1.7\cdot\left(-1\right)\)
\(=1.7\cdot\left(-2.3-3.7-3-1\right)\)
\(=-10\cdot1.7=-17\)
b) Ta có: \(B=2\dfrac{3}{4}\cdot\left(-0.4\right)-1\dfrac{2}{3}\cdot2.75+\left(-1.2\right):\dfrac{4}{11}\)
\(=\dfrac{11}{4}\cdot\left(-0.4\right)-\dfrac{5}{3}\cdot\dfrac{11}{4}+\left(-1.2\right)\cdot\dfrac{11}{4}\)
\(=\dfrac{11}{4}\left(-0.4-\dfrac{5}{3}-1.2\right)\)
\(=-\dfrac{539}{60}\)
c) Ta có: \(C=\dfrac{\left(2^3\cdot5\cdot7\right)\cdot\left(5^2\cdot7^3\right)}{\left(2\cdot5\cdot7^2\right)^2}\)
\(=\dfrac{2^3\cdot5^3\cdot7^4}{2^2\cdot5^2\cdot7^4}\)
\(=10\)
Bài 1:
a)\(\dfrac{5}{7}\)+(\(\dfrac{3}{5}\)+\(\dfrac{-5}{7}\)) b)\(\dfrac{-3}{4}\)-\(\dfrac{15}{14}\):\(\dfrac{-5}{7}\)+\(^{\left(-1\right)^2}\) c)/\(\dfrac{-5}{9}\)/+\(^{\left(\dfrac{-2}{3}\right)^2}\).(20%-1,2)
Giups mik làm 3 câu này ạ.
a, \(\dfrac{5}{7}+\left(\dfrac{3}{5}+\dfrac{-5}{7}\right)\)
\(=\dfrac{5}{7}+\dfrac{-5}{7}+\dfrac{3}{5}
=0+\dfrac{3}{5}=\dfrac{3}{5}\)
b, \(=\dfrac{-3}{4}-\dfrac{15}{14}:\dfrac{-5}{7}+\left(-1\right)^2=\dfrac{-3}{4}-\dfrac{-3}{2}+1=\dfrac{-3}{4}-\dfrac{-6}{4}+1=\dfrac{3}{4}+1=\dfrac{7}{4}\)
c, \(\dfrac{-5}{9}+\left(\dfrac{-2}{3}\right)^2.\left(20\%-1.2\right)=\dfrac{-5}{9}+\dfrac{4}{9}x\left(\dfrac{1}{5}-\dfrac{6}{5}\right)=\dfrac{-5}{9}+\dfrac{4}{9}x\left(-1\right)=\dfrac{-5}{9}+\dfrac{-4}{9}=-1\)
Bài 1:
a) \(\dfrac{5}{7}+\left(\dfrac{3}{5}+\dfrac{-5}{7}\right)\)\(=\left(\dfrac{5}{7}+\dfrac{-5}{7}\right)+\dfrac{3}{5}\)\(=0+\dfrac{3}{5}=\dfrac{3}{5}\)
b) \(\dfrac{-3}{4}-\dfrac{15}{14}:\dfrac{-5}{7}+\left(-1\right)^2\)\(=\dfrac{-3}{4}-\dfrac{15}{14}:\dfrac{-5}{7}+1\)\(=\dfrac{-3}{4}-\dfrac{-3}{2}+1\)
\(=\dfrac{3}{4}+1\)\(=\dfrac{7}{4}\)
\(\left(-2\right)^3.\dfrac{-1}{24}+\left(\dfrac{4}{5}-1,2\right):\dfrac{2}{15}\)
`(-2)^3 . [-1] / 24 + ( 4 / 5 - 1,2 ) : 2/ 15`
`= -8 . [-1] / 24 + ( 4 / 5 - 6 / 5 ) . 15 / 2`
`= 1 / 3 + [-2] / 5 . 15 / 2`
`= 1 / 3 + (-3)`
`= [-8] / 3`
1.Tính: \(\left(\dfrac{-2}{3}x^3y^2z\right).5xy^2z^2\)
2. Tính GTBT M= \(\dfrac{2x^2y-1,2\left(3x-2y\right)}{xy}\)tại x=\(\dfrac{1}{2}\); y= 2
2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:
\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)
\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)
\(=1-1.8+4.8\)
\(=4\)
1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)
\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)
\(=\dfrac{-10}{3}x^4y^4z^3\)
Thực hiện phép nhân sau bằng cách quy về phép nhân hai số thập phân dương tương tự như với số nguyên:
a) \(\left( { - 12,5} \right).1,2\)
b) \(\left( { - 12,5} \right).\left( { - 1,2} \right)\)
a) \(\left( { - 12,5} \right).1,2 = - \left( {12,5.1,2} \right) = - 15\)
b) \(\left( { - 12,5} \right).\left( { - 1,2} \right) = 12,5.1,2 = 15\)
tính \(\lim\limits\dfrac{-\sin2n}{\left(1,2\right)^n}\)
Lời giải:
\(-\sin 2n\leq 1< 1,2^n\) khi $n\to +\infty$ nên $\(|\frac{-\sin 2n}{1,2^n}|< 1\Rightarrow \lim\frac{-\sin 2n}{1,2^n}=0\)
rút gọn
g, \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right).\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\) h,\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right).\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\dfrac{1}{5}}\right)\)
g: \(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
=-(căn 5+2)(căn 5-2)
=-(5-4)=-1
h: \(=\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\dfrac{\sqrt{30}}{3}\right)\left(\dfrac{\sqrt{30}}{5}+\sqrt{2}-\dfrac{4}{5}\sqrt{5}\right)\)
=4/5*căn 10+4/3*căn 6-16/15*căn 15+2/5*căn 15+2-4/5*căn 10+30/15+2/3*căn 15-4/3*căn 6
=4