\(1 - \dfrac{7}{10}\)
Bài 1 : Thực hiện phép tính
a/ \(\dfrac{7}{6}\) - \(\dfrac{13}{12}\) + \(\dfrac{3}{4}\)
b/ 1 \(\dfrac{1}{2}\) . \(\dfrac{-4}{5}\) + \(\dfrac{3}{10}\)
c/ \(\dfrac{25}{9}\) . \(\dfrac{3}{10}\) + ( \(\dfrac{-5}{3}\) )\(^2\) . \(\dfrac{7}{10}\) + | \(\dfrac{-25}{3}\) |
Bài 2 : Tìm x , biết
a/ x - \(\dfrac{5}{6}\) = \(\dfrac{1}{4}\)
b/ \(\dfrac{26}{x}\) = \(\dfrac{-13}{-15}\)
( Cần gấp )
bài1
a) \(\dfrac{7}{6}-\dfrac{13}{12}+\dfrac{3}{4}\)
=\(\dfrac{14}{12}-\dfrac{13}{12}+\dfrac{9}{12}\)
=\(\dfrac{1}{12}+\dfrac{9}{12}\)
=\(\dfrac{10}{12}=\dfrac{5}{6}\)
bài 1
b)\(1\dfrac{1}{2}.(\dfrac{-4}{5})\) + \(\dfrac{3}{10}\)
= \(\dfrac{3}{2}.\left(-\dfrac{4}{5}\right)+\dfrac{3}{10}\)
= \(-\dfrac{6}{5}+\dfrac{3}{10}\)
=\(-\dfrac{12}{10}+\dfrac{3}{10}\)
=\(-\dfrac{9}{10}\)
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
Tìm x, biết:
a) \(\dfrac{-1}{10}\) + \(\dfrac{2}{5}\)x + \(\dfrac{7}{20}\) = \(\dfrac{1}{10}\)
b) \(\dfrac{1}{3}\) + \(\dfrac{1}{2}\) : x= \(-\dfrac{1}{5}\)
c) \(-\dfrac{2}{3}\) : x + \(\dfrac{5}{8}\) = \(-\dfrac{7}{12}\)
a, - \(\dfrac{1}{10}\) + \(\dfrac{2}{5}\)\(x\) + \(\dfrac{7}{20}\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{5}\)\(x\) = \(\dfrac{1}{10}\) - \(\dfrac{7}{20}\) + \(\dfrac{1}{10}\)
\(\dfrac{2}{5}\) \(x\) = - \(\dfrac{3}{20}\)
\(x\) = - \(\dfrac{3}{20}\): \(\dfrac{2}{5}\)
\(x\) = - \(\dfrac{3}{8}\)
b, \(\dfrac{1}{3}\) + \(\dfrac{1}{2}\): \(x\) = - \(\dfrac{1}{5}\)
\(\dfrac{1}{2}\): \(x\) = - \(\dfrac{1}{5}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{2}\): \(x\) = - \(\dfrac{8}{15}\)
\(x\) = \(\dfrac{1}{2}\): (- \(\dfrac{8}{15}\))
\(x\) = - \(\dfrac{15}{16}\)
c, - \(\dfrac{2}{3}\): \(x\) + \(\dfrac{5}{8}\) = - \(\dfrac{7}{12}\)
\(\dfrac{2}{3}\): \(x\) = \(\dfrac{7}{12}\) + \(\dfrac{5}{8}\)
\(\dfrac{2}{3}\) : \(x\) = \(\dfrac{29}{24}\)
\(x\) = \(\dfrac{2}{3}\) : \(\dfrac{29}{24}\)
\(x\) = \(\dfrac{16}{29}\)
Thực hiện phép tính.(tính nhanh nếu có thể)
1/ \(2\dfrac{1}{3}.3\)
2/ \(\left(\dfrac{2}{5}-\dfrac{3}{4}\right)-\dfrac{2}{5}\)
3/ \(\dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}\)
\(2\dfrac{1}{3}.3=\dfrac{7}{3}.3=7.\\ \left(\dfrac{2}{5}-\dfrac{3}{4}\right)-\dfrac{2}{5}=\dfrac{2}{5}-\dfrac{3}{4}-\dfrac{2}{5}=-\dfrac{3}{4}.\\ \dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}.\\ =\dfrac{-10}{11}\left(\dfrac{4}{7}+\dfrac{3}{7}-1\right).\\ =\dfrac{-10}{11}.\left(1-1\right)=0.\)
1) 2\(\dfrac{1}{3}\).3=\(\dfrac{7}{3}\).3=7.
2) (2/5 -3/4) -2/5 = 2/5 -3/4 -2/5 = -3/4.
3) \(\dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}=\dfrac{1}{11}\left(-\dfrac{40}{7}-\dfrac{30}{7}+21\right)=\dfrac{1}{11}.\left(-10+21\right)=1\).
tính
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
b)\(\dfrac{3}{14}:\dfrac{1}{28}-\dfrac{13}{21}:\dfrac{1}{28}+\dfrac{29}{42}:\dfrac{1}{28}-8\)
c)\(-1\dfrac{5}{7}.15+\dfrac{2}{7}\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
c; C = -1\(\dfrac{5}{7}\).15 + \(\dfrac{2}{7}\)(-15) + (-105).(\(\dfrac{2}{3}\) - \(\dfrac{4}{5}\) + \(\dfrac{1}{7}\))
C = - 15.(- 1 - \(\dfrac{5}{7}\) + \(\dfrac{2}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\) + \(1\))
C = -15.[(1 - 1) - (\(\dfrac{5}{7}\) - \(\dfrac{2}{7}\)) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15.[0 - \(\dfrac{3}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15 . [- \(\dfrac{45}{105}\) + \(\dfrac{490}{105}\) - \(\dfrac{588}{105}\)]
C = -15. [ \(\dfrac{445}{105}\) - \(\dfrac{588}{105}\)]
C = - 15.(- \(\dfrac{143}{105}\))
C = \(\dfrac{143}{7}\)
\(\dfrac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}\)+\(\dfrac{8}{1-\sqrt{5}}\)
\(\dfrac{5+\sqrt{7}}{9-\sqrt{23+8\sqrt{7}}}\)+\(\dfrac{5-\sqrt{7}}{2+\sqrt{16+6\sqrt{7}}}\)
\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}\)+\(\dfrac{1}{\sqrt{2}-\sqrt{2+\sqrt{3}}}\)
đề là rút gọn các biểu thức sau
nhờ mọi người giải giúp mình. cảm ơn mn nhìu
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}\)
\(=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
b: \(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2-2\sqrt{5}\)
=2căn 5-2-2căn 5
=-2
d: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)
\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}=\sqrt{2}\)
\(\dfrac{1}{8}-\dfrac{1}{2}+(\dfrac{-11}{12}+1)\)
\(\dfrac{3}{5}-\dfrac{-7}{10}+\dfrac{-13}{10}\)
`1/8 -1/2 + (-11/12 + 1)`
`=1/8 -1/2 + (-11/12 +12/12)`
`=1/8 -1/2 + 1/12`
`= 1/8- 4/8+1/12`
`= -3/8 + 1/12`
`=-7/24`
`---------`
`3/5 -(-7/10) + (-13/10)`
`= 3/5 + 7/10 + (-13/10)`
`= 6/10 + 7/10 + (-13/10)`
`= 13/10 +(-13/10)`
`= 0/10=0`
\(\dfrac{1}{8}-\dfrac{1}{2}+\left(\dfrac{-11}{12}+1\right)\\ =\dfrac{-3}{8}+\dfrac{1}{12}\\ =\dfrac{-7}{24}\\ \dfrac{3}{5}-\dfrac{-7}{10}+\left(-\dfrac{13}{10}\right)\\ =\dfrac{13}{10}-\dfrac{13}{10}\\ =0\)
\(\dfrac{1}{8}-\dfrac{1}{2}+\left(\dfrac{-11}{12}+1\right)=\dfrac{-3}{8}+\dfrac{1}{12}=\dfrac{-7}{24}\)
\(\dfrac{3}{5}-\dfrac{-7}{10}+\dfrac{-13}{10}=\dfrac{6}{10}-\dfrac{-7}{10}+\dfrac{-13}{10}=\dfrac{13}{10}+\dfrac{-13}{10}=\dfrac{0}{10}=0\)
\(\dfrac{7}{10}+\dfrac{2}{10}-\dfrac{1}{5}+1\)
= 9/10 - 1/5 + 1
= 7/10 + 1
= 17/10
\(E=\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{7}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(E=\dfrac{\left(\dfrac{53}{4}-\dfrac{59}{27}-\dfrac{65}{6}\right).\dfrac{5751}{25}+\dfrac{187}{4}}{\left(\dfrac{10}{7}+\dfrac{10}{3}\right):\left(\dfrac{37}{3}-\dfrac{100}{7}\right)}\)
\(=\dfrac{\dfrac{25}{108}.\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{100}{21}:\left(\dfrac{-44}{21}\right)}\)
\(=\dfrac{53,25+\dfrac{187}{4}}{\dfrac{-25}{11}}\)
\(=\dfrac{100}{\dfrac{-25}{11}}\)
\(=-44\)