\(A=\frac{x^2+2x+2017}{2017x^2}\)
tìm GTNN của A
Tìm GTNN của biểu thức A=\(\frac{x^2-2x+2017}{2017x^2}\)với x khác 0
\(A=\frac{1}{2017}-\frac{2}{2017x}+\frac{1}{x^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{1}{2017}-\frac{1}{2017^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{2016}{2017^2}\)
\(\Rightarrow A\ge\frac{2016}{2017^2}\)Dấu "=" xảy ra khi \(\left(\frac{1}{2017}-\frac{1}{x}\right)^2=0\Rightarrow x=2017\)
Vây ......
Tìm giá trị nhỏ nhất của biểu thức sau :
B=\(\frac{x^2-2x+2017}{2017x^2}\)với x khác 0
Giá trị của biểu thức A = x^2017 - 2017x^2016 + 2017x^2015 – 2017x^2014 + ... – 2017x^2 + 2017x – 2017 tại x = 2016
Lời giải:
Tại $x=2016$ thì $x-2016=0$
Khi đó:
$A=x^{2016}(x-2016)-x^{2015}(x-2016)+x^{2014}(x-2016)-x^{2013}(x-2016)+.....-x(x-2016)+x-2017$
$=x^{2016}.0-x^{2015}.0+......-x.0+2016-2017=2016-2017=-1$
Tìm GTNN của C= \(\frac{x^2+2017x+1}{x}\)điều kiện: x>0
\(C=\frac{x^2+2017x+1}{x}=\frac{x^2+2017x}{x}+\frac{1}{x}=x+\frac{1}{x}+2017\)
Áp dụng bất đẳng thức AM - GM ta có :
\(C=x+\frac{1}{x}+2017\ge2\sqrt{x.\frac{1}{x}}=2+2017=2019\) có GTNN là 2019
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{x}\Rightarrow x=1\)
Vậy \(C_{min}=2019\) tại \(x=1\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!
Tìm GTNN A=(x-1)(2x-1)(2x^2-3x-1)+2017
A = x6 - 2017x5 + 2017 x4 - 2017x3 + 2017x2 - 2017x + 2017 với x=2016
x=2016 =>x+1=2017
Thay 2007=x+1 vào A ................................................. tự típ
a, Tìm GTNN của biểu thức:
A=x2+2y2+2xy+2x-4y+2017
b, Cho x,y>0 Cmr \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+3\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(A=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-6y+9\right)+2007\)
\(A=\left(x+y+1\right)^2+\left(y-3\right)^2+2007\ge2007\)
\(A_{min}=2007\) khi \(\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
b/ Đề sai, cho \(x=y=1\Rightarrow5\ge6\)
Tìm GTNN của biểu thức:
\(A=x^2+2y^2+2xy-2x-8y+2017\)
Ta có
\(A=x^2+2y^2+2xy-2x-8y+2017\)
\(=\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(y^2-6y+9\right)+2007\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-3\right)^2+2007\)
\(=\left(x+y-1\right)^2+\left(y-3\right)^2+2007\ge2007\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Tìm tập xác định:
\(y=\frac{\sqrt{2x+10-6\sqrt{2x+1}}}{\left|3x^2+5\right|x\left|-2\right|}-\frac{2017x}{\sqrt[3]{2017x-\left|2017x\right|}}\)
Xét tính chẵn lẽ của hàm số \(y=f\left(x\right)=\frac{\left|2017x-10\right|-\left|2017x+10\right|}{x^6-8x^4+16x^2}\)
a/ ĐKXĐ: \(\left\{{}\begin{matrix}2x+1\ge0\\3\left|x\right|^2+5\left|x\right|-2\ne0\\x-\left|x\right|\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{2}\\\left|x\right|\ne\frac{1}{3}\\x< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\frac{1}{2}\le x< 0\\x\ne-\frac{1}{3}\end{matrix}\right.\)
b/ Nếu \(x\in D\Rightarrow-x\in D\)
\(f\left(-x\right)=\frac{\left|-2017x-10\right|-\left|-2017x+10\right|}{x^6-8x^4+16x^2}\)
\(=\frac{\left|2017x+10\right|-\left|2017x-10\right|}{x^6-8x^4+16x^2}=-\frac{\left|2017x-10\right|-\left|2017x+10\right|}{x^6-8x^4+16x^2}=-f\left(x\right)\)
Hàm lẻ