Những câu hỏi liên quan
BK
Xem chi tiết
H9
28 tháng 8 2023 lúc 8:49

\(x^3-3x^2y+3xy^2-y^3\)

\(=x^3-3\cdot x^2\cdot y+3\cdot x\cdot y^2-y^3\)

\(=\left(x-y\right)^3\)

Thay x=3 và y=2 vào ta có:

\(\left(3-2\right)^3=1^3=1\)

Bình luận (0)
H24
Xem chi tiết
HP
6 tháng 2 2016 lúc 11:02

+12 chứ bn?

X^3+2x^2y+2x+xy^2+2y+12

=x^3+x^2y+x^2y+2x+xy^2+2y+12

=x^2.(x+y)+xy(x+y)+(2x+2y)+12

=x^2.(x+y)+xy(x+y)+2.(x+y)+12

=0+0+0+12=12

 

Bình luận (0)
TH
Xem chi tiết
DA
27 tháng 4 2018 lúc 21:33

bạn chỉ cấn thay x=0,y=-1 váo biểu thức rồi tính như bình thường là dc

Bình luận (0)
VP
Xem chi tiết
H24
2 tháng 1 2017 lúc 22:58

\(\frac{\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)}{\left(x^3+y^3\right)\left(x^3-y^3\right)}=\frac{1}{x^2-y^2}\)

Bình luận (0)
AN
2 tháng 1 2017 lúc 23:24

Có bạn giúp rồi nhé. M khỏi làm nữa nhé. Bài của bạn ngonhuminh là dùng hằng đẳng thức  không đó b. 

Bình luận (0)
H24
Xem chi tiết
NA
5 tháng 4 2020 lúc 9:58

a)   25 - y2= 8.(x -2009)2

do 8.(x-2009)2​​​ không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25

TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)

TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)

TH3: y = +-2  thay vào phương trình thì x không thuộc Z loại

chỉ thử đến y=+- 5 để thỏa mãn ynhỏ hơn hoặc bằng 25

 Cuối cùng ta được y = +- 5 và x = 2009

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
NV
3 tháng 2 2023 lúc 20:20

Bình luận (0)
AD
Xem chi tiết
TH
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

Bình luận (0)
TT
Xem chi tiết
KT
Xem chi tiết
XO
30 tháng 9 2020 lúc 16:19

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LD
30 tháng 9 2020 lúc 16:35

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 9 2020 lúc 16:54

a,\(x^3+y^3=\left(x+y\right)\left[\left(x-y\right)^2+xy\right]\)

\(VP=\left(x+y\right)\left[\left(x-y\right)^2+xy\right]\)

\(=\left(x+y\right)\left(x^2-2xy+y^2+xy\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3=VT\)

\(\Rightarrowđpcm\)

b,\(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x-y\right)^2\)

\(VT=x^3+y^3-xy\left(x+y\right)\)

\(=x^3+y^3-x^2y-xy^2\)

\(=\left(x^3-x^2y\right)+\left(y^3-xy^2\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)=VP\)

\(\Rightarrowđpcm\)

c,\(\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(VP=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3\)

\(VT=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(\Rightarrow VP=VT\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa