tìm x,y thuộc n biết:
x+y+x+y=2x+1/2y
Tìm x,y biết:x4+2x3y+x2y+x2+2xy+2y2+2y+1=0
1,Tìm x,y thuộc N* t/m: y+2 chia hết cho x và x+2 chia hết cho y
2,Tìm x,y thuộc N* biết 2x+1 chia hết cho y và 2y+1 chia hết cho x
\(y+2⋮x;x+2⋮y\Rightarrow\left(x+2\right)\left(y+2\right)⋮xy\Rightarrow xy+2x+2y+4⋮xy\Rightarrow2x+2y+4⋮xy\)
\(\Rightarrow2\left(x+y+2\right)⋮xy\Rightarrow2⋮xy\Rightarrow xy\inƯ\left(2\right)=1;2\)
\(xy=1\Rightarrow x=1,y=1\Rightarrow y+2=1+2=3⋮x=1\Rightarrow y+2⋮x\)
\(x+2=1+2=3⋮y=1\Rightarrow x+2⋮y\)
\(\Rightarrow x=1,y=1\left(tm\right)\)
\(xy=2\Rightarrow x=1,y=2;x=2,y=1\Rightarrow x+2=1+2=3\)ko chia hết cho \(y=2\Rightarrow x+2\)ko chia hết cho y
\(\Rightarrow x=1,y=2\left(ktm\right)\Rightarrow x=2,y=1\left(ktm\right)\)
vậy x=1,y=1
Tìm các số x, y, z biết:x : y : z = 3 : 4 : 5 và 2x2+ 2y2-3z2= -100
Tìm x; y thuộc N
a) 9 ( x-1).(y-2)= 4
b) x.(y+2)-2y = 1
c) 2xy - 2x-2y = 3
Tìm x;y thuộc Z biết:x(x2+x+1)=4y(y+1)
x(x² + x + 1) = 4y(y + 1)
<=> (x + 1)(x² + 1) = (2y + 1)²
Dễ dàng thấy là: x + 1 và x² + 1 nguyên tố cùng nhau nên x + 1 và x² + 1 là 2 số chính phương.
=> x²; x² + 1 là 2 số chính phương liên tiếp
=> x = 0; y = 0 hoặc y = - 1
Tìm x,y thuộc N* biết : 2x+2y=72 ( x>y)
\(\Rightarrow2^y\left(2^{x-y}+1\right)=72\)
Vì \(2^{x-y}+1\) lẻ nên \(2^y\left(2^{x-y}+1\right)=72=2^3\cdot9\)
\(\Rightarrow\left\{{}\begin{matrix}y=3\\2^{x-3}+1=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3\\2^{x-3}=8=2^3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;3\right)\)
tìm x,y thuộc N , BIẾT
xy +2y = 12
( 2x + 1 ). ( y - 3 ) = 10
( x + 1 ) . (2y-1) = 12
Tìm x,y thuộc N* biết x>y; 2x+1 chia hết cho y; 2y+1 chia hết cho x. Giúp tớ với!
Cho x,y thuộc N*. Tìm x,y biết: 2x - 2y = 1024
Ta có \(2^x-2^y=1024\Rightarrow x>y\)
Do đó \(2^y\left(2^{x-y}-1\right)=2^{10}\)
Lại có \(2^{x-y}-1\) lẻ và là ước 10 nên \(2^{x-y}-1=1\Rightarrow2^y=2^{10}\)
\(\Rightarrow y=10\Rightarrow2^{x-10}=2^1\Rightarrow x=11\)
Vậy \(\left(x;y\right)=\left(11;10\right)\)