Hãy tìm số tự nhiên n sao cho A=n4-2n3+3n2 - 2n là số chính phương
Tìm số nguyên dương n sao cho n4+4n3-3n2-n+3 là số chính phương .
Hãy tìm số tự nhiên n sao cho A = n^4 - 2n^3 + 3n^2 - 2n là số chính phương
Tìm số tự nhiên n để phân thức N = n 4 - 2 n 3 + 5 n - 2 có giá trị là số nguyên
Điều kiện xác định của phân thức: n ≠ 2
Ta có:
Vậy để N nguyên thì nguyên ⇒ n – 2 là ước của 5; Ư ( 5 ) = - 1 ; 1 ; - 5 ; 5
n - 2= -1 ⇒ n =1;
n – 2 = 1 ⇒ n =3;
n – 2 = -5 ⇒ n = - 3;
n – 2 = 5 ⇒ n = 7;
vì n ∈ N nên n = 1; n = 3; n = 7
Vậy với n ∈ { 1; 3; 7} thì có giá trị là số nguyên
tìm số tự nhiên n sao cho a=n^4-2n^3+3n^2-2n là số chính phương
Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
1.Tìm n ∈ Z để n4+2n3+2n2+n+7 là số chính phương
2.Có tồn tại hay không số có dạng 202020202020…⋮ 2021
Lỡ có sai sót thì thông cảm giúp mình nha:3
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
tìm số tự nhiên n sao cho 2n+5 và n+31 đều là số chính phương
Lời giải:
Đặt $n+31=a^2$ với $a$ tự nhiên. Khi đó: $2n+5=2(a^2-31)+5=2a^2-57$
Như vậy, ta cần tìm $a$ sao cho $2a^2-57$ là số chính phương.
Ta có 1 tính chất quen thuộc: Số chính phương lẻ chia 8 dư $1$ (bạn có thể xét 1 scp $x^2$ và xét các TH $x=4k+...$ để cm)
$\Rightarrow 2a^2-57\equiv 1\pmod 8$
$\Rightarrow 2a^2\equiv 58\pmod 8$
$\Rightarrow a^2\equiv 29\equiv 5\pmod 8$
(điều này vô lý do scp chia 8 dư 0,1 hoặc 4)
Vậy không tồn tại số tự nhiên $a$, tức là không tồn tại số $n$ cần tìm.
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0