tìm các chữ số a,b,c,d biết abcd1998 chia hết cho 1997
Bài 1: Viết thêm 1 chữ số vào các số sau để được số:
a. Chia hết cho 3: 64… 221… 452… 821… 2997... 2014...
c. Chia hết cho 2 và 5: 74… 421… 512… 721… 1997… 2014…
b. Chia hết cho 5: 34… 501… 472… 821… 1997… 2014…
d. Chia hết cho 9: 35… 523… 480… 872… 3997… 2014…
Bài 1: Viết thêm 1 chữ số vào các số sau để được số:
a. Chia hết cho 3: 64… 221… 452… 821… 2997... 2014...
c. Chia hết cho 2 và 5: 74… 421… 512… 721… 1997… 2014…
b. Chia hết cho 5: 34… 501… 472… 821… 1997… 2014…
d. Chia hết cho 9: 35… 523… 480… 872… 3997… 2014…
Bài 1: Viết thêm 1 chữ số vào các số sau để được số:
a. Chia hết cho 3: 64… 221… 452… 821… 2997... 2014...
c. Chia hết cho 2 và 5: 74… 421… 512… 721… 1997… 2014…
b. Chia hết cho 5: 34… 501… 472… 821… 1997… 2014…
d. Chia hết cho 9: 35… 523… 480… 872… 3997… 2014…
giúp mình với
Bài 1:Chứng minh với mọi số tự nhiên n, luôn có
a.12^4n+1+3^4n+1 chia hết cho 5
b.9^2001n+1 chia hết cho 10
c.n^2+n+12 không chia hết cho 5
Bài 2:Tìm chữ số tận cùng
a.2008^29
b.192^26
c.1997^1997
d.1657^735
a,Tìm các chữ số a,b thích hợp để số 217ab chia hét cho 6,7 và 18
b,Tìm các chữ số a,b,c thích hợp để 179abc chia hết cho 5,7 và 9
c,Tìm các chữ số a,b,c,d biết abcd + abc+ab+a=4321
A) tìm các chữ số a,b thích hợp đe sô 217ab chia hết cho 6,7,18
B) tìm các chữ số a,b,c,d biết : abcd + abc + ab + a=4321
1. Tìm số có 4 chữ số biết rằng số đó gấp 72 lần tổng các chữ số của nó.
2. Tìm các số tự nhiên a,b,c,đ sao cho : (ab x c x d ) x d = 1997.
3. Tìm các chữ cái a,b,c,đ,e thỏa mãn : abcde+ 41976 =edcba.
a) goi so can tim la abcd
ta co abcd=72a+72b+72c+72d
=> 1000a+100b+10c+d=72a+72b+72c+72d
=> 928a+28b=62c+71d
Tu lam tiep
b) câu hỏi tương tự
c) Theo đề bài:
ABCDE + 41976 = EDCBA
A x 10 000 + B x 1 000 + C x 100 + D x 10 + E + 41 976 = E x 10 000 + D x 1 000 + C x 100 + B x 10 + A
A x 9 999 + B x 990 + 41 976 = E x 9 999 + D x 990
A x 101 + B x 10+ 424 = E x 101 + D x 10 ( Chia cả 2 vế cho 99)
Vì EDCBA < 100 000 nên ABCDE < 100 000 - 41 976 = 58 024 => A < 6
+) Nếu A = 5 thì 505 + B x 10 + 424 = E x 101 + D x 10 => 929 + B x 10 = E x 101 + D x 10
Vì 929 + B x 10 có tận cùng là 9 ; E x 101 + D x 10 có tận cùng là E nên E = 9
=> 929 + B x 10 = 909 + D x 10 => 20 + B x 10 = D x 10 => 2 + B = D.
Chọn B= 0 thì D = 2; B = 1 thì D = 3; B = 2 thì D = 4; B = 3 thì D = 5; B = 4 thì D = 6; B = 5 thì D = 7; B = 6 thì D = 8; B = 7 thì D = 9
+) Nếu A = 4 thì 828 + B x 10 = E x 101 + D x 10
=> E = 8 => 828 + B x 10 = 808 + D x 10 => 20 + B x 10 = D x 10 => 2 + B = D: tương tự như trên
+) Nếu A = 3 thì ta có : E = 7; 2 + B = D
+) Nếu A = 2 thì E = 6; 2 + B = D : (như trên)
+) Nếu A = 1 thì E = 5; 2 + B = D
Vậy các chữ cái A có thể bằng 1;2;3;4; hoặc 5 tương ứng chữ cái E bởi 5;6;7;8 hoặc 9
Chữ cái B; D bởi các chữ số thỏa mãn 2 + B = D; C là chữ số tùy ý
Trịnh Tiến Đức t rê chuột mỏi lắm -_-
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
TL
t i k cho mik đi mik làm cho bài này mik làm rồi
HOk tốt
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :