Những câu hỏi liên quan
DT
Xem chi tiết
SM
Xem chi tiết
TA
24 tháng 7 2015 lúc 15:47

Super Man mà lại còn phải lên đây để hỏi bài à?

Bình luận (0)
SM
Xem chi tiết
HA
28 tháng 7 2016 lúc 15:24

Super man hỏi bài? Nghịch lý

Bình luận (0)
KQ
18 tháng 12 2020 lúc 15:57

ok

 

Bình luận (0)
SM
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
HT
20 tháng 1 2018 lúc 5:56

Ta có:

1+\(\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)

Thay a=1

=>\(1+\dfrac{1}{b}=b+\dfrac{1}{c}=c+1\)

*Lấy \(1+\dfrac{1}{b}=c+1\Rightarrow\dfrac{1}{b}=c\Rightarrow b=\dfrac{1}{c}\)

=>\(1+\dfrac{1}{b}=\dfrac{2}{c}=c+1\)

*Lấy \(\dfrac{2}{c}=\dfrac{c+1}{1}\)

=> 2=c(c+1)

<=> 2=c2+c

=>c=-2

*Lấy \(1+\dfrac{1}{b}=\dfrac{2}{c}\)

Thay c=-2 và quy đồng

=>\(\dfrac{b+1}{b}=-1\)

=>b+1=-b

=> b+b=-1

=>2b=-1

=> b=-1/2

Vậy b=\(-\dfrac{1}{2};c=-2\)

Bình luận (0)
PT
Xem chi tiết
TD
21 tháng 4 2019 lúc 15:41

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Bình luận (0)
TD
21 tháng 4 2019 lúc 15:43

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

Bình luận (0)
TD
21 tháng 4 2019 lúc 15:52

Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)

\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)

\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)

Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0

Mà abc > 0 nên A \(\ge\)0 => ....

Bình luận (0)
DT
Xem chi tiết
HP
1 tháng 8 2016 lúc 16:08

\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)

\(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)

\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)

\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)

\(=2014.\frac{1}{2014}-3=1-3=-2\)

Vậy.....................

Bình luận (0)
NT
Xem chi tiết
NS
Xem chi tiết