Những câu hỏi liên quan
NB
Xem chi tiết
NT
20 tháng 4 2022 lúc 6:20

\(A=x^4+2x^2-8x+2019\) \(=x^4-2x^2+1+4x^2-8x+4+2014\)

\(=\left(x^2-1\right)^2+4\left(x-1\right)^2+2014\ge2014\forall x\)  

" = " \(\Leftrightarrow x=1\)

Bình luận (1)
MN
Xem chi tiết
AH
30 tháng 10 2023 lúc 19:43

Lời giải:

$A=(x^2+4y^2+4xy)+x^2+5-8x-12y$

$=(x+2y)^2-6(x+2y)+x^2+5-2x$

$=(x+2y)^2-6(x+2y)+9+(x^2-2x+1)-5$

$=(x+2y-3)^2+(x-1)^2-5\geq 0+0-5=-5$

Vậy $A_{\min}=-5$. Giá trị này đạt được khi $x+2y-3=x-1=0$

$\Leftrightarrow x=1; y=1$

Bình luận (0)
H24
Xem chi tiết
H9
4 tháng 8 2023 lúc 6:30

a) \(M=x^2-3x+10\)

\(M=x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{31}{4}\)

\(M=\left(x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}\right)+\dfrac{31}{4}\)

\(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\)

Mà: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) nên: \(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Dấu "=" xảy ra 

\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}=\dfrac{31}{4}\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy: \(M_{min}=\dfrac{31}{4}\) với \(x=\dfrac{3}{2}\)

b) \(N=2x^2+5y^2+4xy+8x-4y-100\)

\(N=x^2+x^2+4y^2+y^2+4xy+8x-4y-120+16+4\)

\(N=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

Mà:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) nên \(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge120\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2y=0\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy: \(N_{min}=120\) khi \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Bình luận (1)
GH
4 tháng 8 2023 lúc 6:16

a

\(M=x^2-3x+10=x^2-2.\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{31}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Min M \(=\dfrac{31}{4}\) khi và chỉ khi \(x=\dfrac{3}{2}\)

Bình luận (0)
GH
4 tháng 8 2023 lúc 6:20

b

\(N=2x^2+5y^2+4xy+8x-4y-100\\ =x^2+8x+16+y^2-4y+4+x^2+4xy+4y^2-120\\ =\left(x+4\right)^2+\left(y-2\right)^2+\left(x+2y\right)^2-120\ge-120\)

Min N \(=-120\) khi và chỉ khi \(x=-4\) và \(y=2\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 7 2018 lúc 10:20

A =  2 x 2 - 8 x - 10

= 2 x 2 - 4 x + 4 - 18 = 2 x - 2 2 - 18

Do 2 x - 2 2  ≥ 0 với mọi x ⇒ 2 x - 2 2  – 18 ≥ −18

A = -18 khi và chỉ khi x - 2 = 0 hay x = 2

Do đó giá trị nhỏ nhất của biểu thức A bằng -18 tại x = 2

Bình luận (0)
PD
Xem chi tiết
NM
23 tháng 10 2021 lúc 19:20

Bài 4:

\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)

Bài 5:

\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)

Bình luận (1)
DC
Xem chi tiết
DC
Xem chi tiết
SG
3 tháng 11 2016 lúc 17:53

A = 2x2 - 8x + 14

A = 2x2 - 4x - 4x + 8 + 6

A = 2x.(x - 2) - 4.(x - 2) + 6

A = (x - 2).(2x - 4) + 6

A = 2.(x - 2)2 + 6 \(\ge6\) với mọi x

Dấu "=" xảy ra khi (x - 2)2 = 0

=> x - 2 = 0

=> x = 2

Vậy AMin = 6 khi và chỉ khi x = 2 

Bình luận (0)
TN
3 tháng 11 2016 lúc 17:56

A= 2x2-8x+14

=2(x2-4x+7)

=2(x2-4x+4)+6

=2(x-2)2+6\(\ge\)6

Dấu = khi x-2=0 <=>x=2

Vậy MinA=6 khi x=2

Bình luận (0)
PN
19 tháng 8 2020 lúc 20:46

\(A=2x^2-8x+14\)

\(=2\left(x^2-4x+4\right)+6\)

\(=2\left(x-2\right)^2+6\)

Ta có : \(2\left(x-2\right)^2\ge0;\forall x\inℝ\)

Suy ra \(2\left(x-2\right)^2+6\ge6\)

Dấu = xảy ra \(< =>2\left(x-2\right)^2=0\)

\(< =>x-2=0< =>x=2\)

Vậy Min A = 6 khi x = 2

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
28 tháng 7 2017 lúc 8:23

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

Bình luận (0)
CN
Xem chi tiết
AH
28 tháng 6 2023 lúc 10:04

Lời giải:

$2x^2+y^2+2xy-8x-6y+30$

$=(x^2+y^2+2xy)+x^2-8x-6y+30$
$=(x+y)^2-6(x+y)+(x^2-2x)+30$
$=(x+y)^2-6(x+y)+9+(x^2-2x+1)+20$

$=(x+y-3)^2+(x-1)^2+20\geq 20$
Vậy GTNN của biểu thức là $20$ khi $x+y-3=x-1=0$

$\Leftrightarrow x=1; y=2$

Bình luận (1)