CMR : Q =x4 +2014x2 +2013x +2014 duong voi moi so
cmr voi moi so n nguyen duong ta co \(2^n\) lon hon hoac bang n+2
cmr voi moi so n nguyen duong ta co 2mu n lon hon hoac bang n+2
đề không rõ ràng nếu n bằng 0 thì dpcm là sai nên ta khỏi cm
n bằng 1 cũng sai nữa chắc sai đề rồi
CMR 1 mũ n + 9 mũ n + 1993 mũ n ko phai so chinh phuong voi moi n nguyen duong
CMR voi moi so nguyen duong n thi B=3^n+2 -2^n+2 +3^n -2^n chia het cho 10
Ta có:
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2 +1)-2^n(2^2 +1)
=3^n.10-2^n.5=3^n.10-2^(n-1).10
=(3^n-2^(n-1)).10 chia het cho 10
Tick nhé
CMR 1 mũ 2n + 9 mũ 2n + 77 mũ 2n + 1977 mũ 2n ko phai so chinh phuong voi moi n nguyen duong
CMR VOI moi so n nguyen duong deu co A=5^nx(5^n +1)-6^nx(3^n +2) chia het cho 91,giup minh nha
cmr
B=\(\left(1-\frac{3}{2.4}\right)\left(1-\frac{3}{3.5}\right)\left(1-\frac{3}{4.6}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)< 2 \)Voi moi so nguyen duong n
\(B=\left(1-\frac{3}{2.4}\right)\left(1-\frac{3}{3.5}\right)\left(1-\frac{3}{4.6}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)\)
\(=\frac{1.5}{2.4}.\frac{2.6}{3.5}.\frac{3.7}{4.6}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(=\frac{\left[1.2.3...\left(n-1\right)\right]\left[5.6.7...\left(n+3\right)\right]}{\left(2.3.4...n\right)\left[4.5.6...\left(n+2\right)\right]}\)
\(=\frac{n+3}{4n}< 2\left(đpcm\right)\)
CMR : \(3^{n+2}-2^{n+4}+3^n+2^2\)chia het cho 30 voi moi n nguyen duong
Ta có : 3^n+2 - 2^n+4 + 3^n + 2^n
= (3^n+2 + 3^n) - (2^n+4-2^n)
= 3^n-1.(3^3+3) - 2^n-1.(2^5-2) ( vì n nguyên dương nên n-1 >= 0 )
= 3^n-1.30 - 2^n-1.30
= 30.(3^n-1+2^n-1) chia hết cho 30
=> ĐPCM
Tk mk nha
cho p=( 3/x^4-x^3+x-1)-(1/x^4+x^3-x-1)-(4/x^5-x^4+x^3-x^2+x). cmr p la so duong voi moi x thuoc moi mien xd cua p