Phân tích đa thức thành nhân tử:
1/ \(45x\left(y-8\right)+27x\left(8-y\right)\)
Phân tích đa thức thành nhân tử
\(27x^3-\dfrac{1}{8}y^3\)
a. \(\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}x^2\right)\)
b. \(\dfrac{1}{8}\left(216x^3-y^3\right)=\dfrac{1}{8}\left(6x-y\right)\left(36x^2+6xy+y^2\right)\)
cách phân tích nào đúng a hay b giải thích vì sao
Phân tích đa thức thành nhân tử
a. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
b. \(27x^3-\dfrac{1}{8}y^3\)
c. \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{32}\)
\(a,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ b,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ c,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)
Phân tích đa thức thành nhân tử:
a) 45x.(y-8)-27x.(8-y)
b) x2-49+4y2-4xy
a) \(45x\left(y-8\right)-27x\left(8-y\right)=45x\left(y-8\right)+27x\left(y-8\right)=\left(y-8\right)\left(45x+27x\right)=72x\left(y-8\right)\)
b) \(x^2-49+4y^2-4xy=\left(x-2y\right)^2-7^2=\left(x-2y-7\right)\left(x-2y+7\right)\)
a,=x(y-8)(45+27)=x(y-8)72
\(b,=\left(x-2y\right)^2-49=\left(x-2y+7\right)\left(x-2y-7\right)\)
tick mik nha
a: \(45x\left(y-8\right)-27x\left(8-y\right)\)
\(=45x\left(y-8\right)+27x\left(y-8\right)\)
\(=72x\left(y-8\right)\)
b: \(x^2-4xy+4y^2-49\)
\(=\left(x-2y\right)^2-49\)
\(=\left(x-2y-7\right)\left(x-2y+7\right)\)
Câu 14: Kết quả phân tích đa thức 5x3 - 10x2y + 5xy2 thành nhân tử là:
A. 5x(x – y)2 B. x(5x – y)2 C. -5x(x + y)2 D. x(x + 5y)2
Câu 15: Rút gọn phân thức:\(\dfrac{15x\left(3-y\right)}{45x\left(y-3\right)}\)ta được kết quả là:
A. 3 B. -3x C.\(\dfrac{1}{3x}\) D.\(\dfrac{-1}{3}\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right).\)
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
Phân tích đa thức thành nhân tử:
a) \(27x^4-9x^3+14x^2-4\)
b)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)+xyz\)
c) \(x^8+x^7+1\)
a/ Đa thức này không phân tích được thành nhân tử bạn nhé.
b/ $(x+y)(y+z)(x+z)+xyz$
$=xy(x+y)+yz(y+z)+xz(x+z)+2xyz+xyz$
$=[xy(x+y)+xyz]+[yz(y+z)+xyz]+[xz(x+z)+xyz]$
$=xy(x+y+z)+yz(x+y+z)+xz(x+y+z)=(x+y+z)(xy+yz+xz)$
c/
$x^8+x^7+1=(x^8-x^2)+(x^7-x)+x^2+x+1$
$=x^2(x^6-1)+x(x^6-1)+x^2+x+1$
$=(x^6-1)(x^2+x)+x^2+x+1$
$=(x^2+x+1)(x-1)(x^3+1)(x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^3+1)(x^2+x)+1]=(x^2+x+1)(x^6-x^4+x^3-x+1)$
Phân tích đa thức thành nhân tử :
\(\left(12x^2-12xy+3y^2\right)-10\left(2x-y\right)+8\)
3*(\(4x^2-4xy+y^2\))-10(2x-y)+8
3*(2x-y)^2-10(2x-y)+8
3*(2x-y)^2-6(2x-y)-4(2x-y)+8
3(2x-y)(2x-y-2)-4(2x-y-2)
(2x-y-2)(6x-3y-40
\(\left(12x^2-12xy+3y^2\right)-10\left(2x-y\right)+8\)
\(=\left(12x^2-6xy-6xy+3y^2\right)-10\left(2x-y\right)+8\)
\(=\left[6x\left(2x-y\right)-3y\left(2x-y\right)\right]-10\left(2x-y\right)+8\)
\(=\left(2x-y\right)\left(6x-3y\right)-10\left(2x-y\right)+8\)
\(=3\left(2x-y\right)^2-10\left(2x-y\right)+8\)
Đặt \(2x-y=a\), khi đó biểu thức có dạng:
\(3a^2-10a+8=3a^2-6a-4a+8\)
\(=3a\left(a-2\right)-4\left(a-2\right)=\left(a-2\right)\left(3a-4\right)\)
\(=\left(2x-y-2\right)\left(6x-3y-4\right).\)
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
phân tích đa thức thành nhân tử bằng phph dùng hằng đẳng thức
\(\left(2x-y\right)^2+\left(3+1\right)^2\)
\(64-27x^3\)
\(64-27x^3=4^3-\left(3x\right)^3=\left(4-3x\right)\left(16+12x+9x^2\right)\)