Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\).Tính giá trị biểu thức \(A=\frac{x-y+z}{x+2y-z}\)
Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\). Tính giá trị của biểu thức A = \(\frac{x-y+z}{x+2y-z}\)
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k,y=5k,z=7k\)
Ta có: \(A=\frac{x-y+z}{x+2y-z}\)
\(\Rightarrow A=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{k\left(2-5+7\right)}{2k+10k-7k}=\frac{4k}{\left(2+10-7\right)k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Cho \(\frac{x}{5}=\frac{y}{5}=\frac{z}{7}\) tính giá trị biểu thức \(A=\frac{x-y+z}{x+2y-z}\)
Ta có \(\frac{x}{5}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau tao có
\(\frac{x}{5}=\frac{y}{5}=\frac{z}{7}=\frac{x-y+z}{5-5+7}=\frac{x-y+z}{7}\left(1\right)\)
\(\frac{x}{5}=\frac{2y}{10}=\frac{z}{7}=\frac{x+2y-z}{5+10-7}=\frac{x+2y-z}{8}\left(2\right)\)
Từ (1) và (2) ta được \(\frac{x-y+z}{7}=\frac{x+2y-z}{8}\Rightarrow\frac{x-y+z}{x+2y-z}=\frac{7}{8}\)
Vậy A= \(\frac{7}{8}\)
Study Well !
đợi mk đi có việc đã , xong sẽ quay lại giải giùm bn nghe Lê Trần Hoàng Oanh
Cho \(\frac{x}{2}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\).Tính giá trị biểu thức A=\(\frac{x-y+z}{x+2y-z}\).
đặt x=2k ,y=5k, z=7k
=>A=2k-5k+7k/2k+10k-7k
=(2-5+7)k/(2+10-7)k
=4k/5k =4/5
Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Tính giá trị biểu thức \(A=\frac{x-y+z}{x+2y-z}\)
Cho x, y, z khác 0, thỏa mãn : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Tính giá trị của biểu thức : \(A=\frac{4x-y+z}{x+2y-z}\)
Cần gấp lắm ạ!!!
\(Đặt x / 2 = y / 5 = z / 7 = k \)
\(\Rightarrow\)\(x = 2k ; y = 5k ; z = 7k\)
\(A = ( 4x - y + z ) / ( x + 2y - z )\)
\(A = ( 4 . 2k - 5k + 7k ) / ( 2k + 2 . 5k - 7k ) \)
\(A = ( 8k - 5k + 7k ) / ( 2k + 10k - 7k )\)
\(A = 10 k / 5k\)
\(A = 2\)
Bài 1: Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\). Tính giá trị biểu thức \(A=\frac{x-y+z}{x+2y-z}\)
Bài 2: Tìm x và y biết rằng: (x-0,2)^10+(y+3,1)^20=0
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
Cho\(\frac{x}{2}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\).Tính giá trị biểu thức A=\(\frac{x-y+z}{x+2y-z}\)
GIÚP MIKF VỚI!
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k;y=5k;z=7k\)
Theo đề ta có:
\(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}\)
\(A=\frac{\left(2-5+7\right)k}{2k+10k-7k}=\frac{\left(2-5+7\right)k}{\left(2+10-7\right)k}\)
\(A=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
\(\text{Đ}\text{ặt}:\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\\z=7k\end{cases}}\)
\(\Rightarrow A=\frac{x-y+z}{x+2y-z}\)
\(=\frac{2k-5k+7k}{2k+2.\left(5k\right)-7k}\)
\(=\frac{4k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
a)Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\). Tính giá trị biểu thức \(A=\frac{x-y+z}{x+2y-z}\)
b) Cho \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\). Tính giá trị biểu thức: \(B=\frac{2x+3y+4z}{3x+4y+5z}\)
a)Đặt x/2=y/5=z/7=k suy ra x=2k, y=5k, z=7k> Thay vào A ta được kết quả là 4/5.
b)Vì x/3=y/4 nên x/15=y/20.Vì y/5=z/6 nên y/20=z/24
Suy ra:x/15=y/20=z/24.Tương tự phần a) đặt k rồi tính kết quả.
a)Ta có:Ta có x/5 = y/4 = z/3
Dễ thấy : y/4 = 2y/8 = -2y/-8 và z/3 = 3z/9
Suy ra : x/5 = y/4 = z/3 => x/5 = 2y/8 = 3z/9 = (x + 2y + 3z)/(5 + 8 + 9) = (x + 2y + 3z)/22
(tính chất của dãy tỉ số bằng nhau)
Tương tự : x/5 = -2y/-8 = 3z/9 = (x - 2y + 3z)/(5 - 8 + 9) = (x- 2y + 3z)/6
Ta có : (x + 2y + 3z)/22 = (x - 2y + 3z)/6 (cùng bằng x/5)
=> (x + 2y + 3z)/(x - 2y + 3z) = 22/6 = 11/3
b)cho x/3=y/4 va y/5=z/6.tinh M=2x+3y+4z/3x+4y+5z? | Yahoo Hỏi & Đáp
a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}=\frac{x-y+z}{2-5+7}=\frac{x+2y-z}{2+10-7}.\)
\(\Rightarrow A=\frac{x-y+z}{x+2y-z}=\frac{4}{5}\)
b) \(\frac{x}{3}=\frac{y}{4}=\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=\frac{2x}{30}=\frac{3y}{60}=\frac{4z}{96}=\frac{3x}{45}=\frac{4y}{80}=\frac{5z}{120}=\)
\(=\frac{2x+3y+4z}{30+60+96}=\frac{3x+4y+5z}{45+80+120}\Rightarrow B=\frac{2x+3y+4z}{3x+4y+5z}=\frac{186}{245}\)
cho \(\frac{x}{2}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)tìm giá trị của biểu thức A=\(\frac{x-y+z}{x+2y-z}\)