Đại số lớp 7

H24

Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\). Tính giá trị của biểu thức A = \(\frac{x-y+z}{x+2y-z}\)

NT
17 tháng 11 2016 lúc 17:55

Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)

\(\Rightarrow x=2k,y=5k,z=7k\)

Ta có: \(A=\frac{x-y+z}{x+2y-z}\)

\(\Rightarrow A=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{k\left(2-5+7\right)}{2k+10k-7k}=\frac{4k}{\left(2+10-7\right)k}=\frac{4}{5}\)

Vậy \(A=\frac{4}{5}\)

 

Bình luận (0)

Các câu hỏi tương tự
LO
Xem chi tiết
TG
Xem chi tiết
TD
Xem chi tiết
HT
Xem chi tiết
BT
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
NL
Xem chi tiết
LL
Xem chi tiết