Những câu hỏi liên quan
TN
Xem chi tiết
TH
27 tháng 4 2023 lúc 21:41

Với \(ab+bc+ca=1\) và a,b,c>0 ta có:

\(\left\{{}\begin{matrix}\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(c+a\right)}\\\sqrt{b^2+1}=\sqrt{\left(b+c\right)\left(a+b\right)}\\\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(b+c\right)}\end{matrix}\right.\). Do đó:

\(\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}=a+b\)

Tương tự: \(\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}=b+c\) ; \(\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}=c+a\)

\(\Rightarrow P=2\left(a+b+c\right)\)

\(\Rightarrow P^2=4\left(a+b+c\right)^2\ge4.3\left(ab+bc+ca\right)=4.3.1=12\)

\(\Rightarrow P\ge2\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)

Vậy \(MinP=2\sqrt{3}\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
PH
Xem chi tiết
CN
Xem chi tiết
NL
13 tháng 1 2021 lúc 21:08

Tìm điều gì của M bạn?

Bình luận (0)
TH
13 tháng 1 2021 lúc 22:32

Mình nghĩ là tìm Min, Max \(M=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\).

Tìm Min: Ta có \(M^2\ge a+b+b+c+c+a=2\left(a+b+c\right)\ge2\sqrt{a^2+b^2+c^2}=2\).

Do đó \(M\geq\sqrt{2}\).Đẳng thức xảy ra khi a = b = 0; c = 1.

Tìm Max: Ta có \(M\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}=\sqrt[4]{108}\).

Bình luận (2)
KD
Xem chi tiết
HQ
Xem chi tiết
LP
20 tháng 6 2023 lúc 19:33

 Vì \(a^2,b^2,c^2\ge0\) nên \(a^2+b^2+c^2\ge0\). ĐTXR \(\Leftrightarrow a=b=c=0\), thỏa mãn đk đề bài. Vậy GTNN của \(a^2+b^2+c^2\) là 0, xảy ra khi \(a=b=c=0\)

Bình luận (0)