tính tổng \(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in Z\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính tổng :
S = 1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)(n\(\in\)Z+)
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)
\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)
\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)
\(S_1=1+1+1+...+n=n\)
\(S_2=3+9+...+3^n\)
\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)
\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)
1) Cho tổng:
A = 4n + 4 \(\left(n\in Z\right)\) . Tìm n để A chia hết cho n
B = 5n + 6 \(\left(n\in Z\right)\) . Tìm n để B chia hết cho n
2) Tính nhanh
a) \(\left(\frac{3}{29}-\frac{1}{5}\right).\frac{29}{3}\)
b) \(\frac{1}{7}.\frac{5}{9}+\frac{5}{9}.\frac{1}{7}+\frac{5}{9}.\frac{3}{7}\)
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
Tính tổng S= 1+2+5+14+.......+\(\frac{3^{n-1}+1}{2}\)(n thuộc Z)
Tính tổng:
\(S=\frac{3}{1^2.3}+\frac{5}{\left(1^2+2^2\right).4}+\frac{7}{\left(1^2+2^2+3^2\right).5}+...+\)\(\frac{2n+1}{\left(1^2+2^2+3^2+...+n^2\right).\left(n+2\right)}\)
mấy Box Toán giúp em với
oOo Hello the world oOo, làm được không?
Cho 3 số dương x, y, z thỏa mãn điều kiện xy + yz + zx = 1. Tính tổng:
\(S=\sqrt[x]{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+\sqrt[y]{\frac{\left(1+x^2\right)\left(1+z^2\right)}{\left(1+y^2\right)}}+\sqrt[z]{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
Ta có \(x^2+1=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)
\(y^2+1=\left(y+z\right)\left(y+x\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
Khi đó
\(S=x.\sqrt{\left(y+z\right)^2}+y.\sqrt{\left(x+z\right)^2}+z.\sqrt{\left(x+y\right)^2}=2\left(xy+yz+xz\right)=2\)
Tính tổng : S = 1 + 2 + 5 + 14 + ........ + \(\frac{3^{n-1}+1}{2}\) ( với n thuộc Z )
áp dụng quy tắc
số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1
Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2
1, A=\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{2}{\sqrt{x}+1}\right):\frac{x-1}{\sqrt{x}}\) với x > 0
a, Rút gọn
b, Tìm x nguyên nhỏ nhất để A < 0
c, Tìm \(x\in Z\) để \(A\in Z\)
2, Rút gọn: \(\left(\frac{14}{\sqrt{14}}+\frac{\sqrt{12}+\sqrt{30}}{\sqrt{5}+\sqrt{2}}\right).\sqrt{5-\sqrt{21}}\)
3, Cho \(\left|x\right|< 1,\left|y\right|< 1\). Chứng minh \(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\)
Bạn nào giúp mk thứ 2 phải nộp rồi!!!
Tính tổng : \(S=\left(2+\frac{1}{2}\right)^2+\left(4+\frac{1}{4}\right)^2+...+\left(2^n+\frac{1}{2^n}\right)^2\)
Ta có : \(S=\left(4+2+\frac{1}{4}\right)+\left(16+2+\frac{1}{16}\right)+..+\left(2^{2n}+2+\frac{1}{2^{2n}}\right)\)
\(=\left(4+16+...+2^{2n}\right)+2n+\left(\frac{1}{4}+\frac{1}{16}+.....+\frac{1}{2^{2n}}\right)\)
Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân \(S_n=u_1\frac{q^n-1}{q-1}\)
\(S=4.\frac{4^{n-1}}{3}+2n+\frac{1}{4}.\frac{2^{\frac{1}{2n}}-1}{\frac{1}{4}-1}=4.\frac{4^n-1}{3}+2n+\frac{1}{3}.\frac{2^{2n}-1}{2^{2n}}\)
\(=2n+\frac{4^n-1}{3}.\frac{4.4^n+1}{4^n}=2n+\frac{\left(4^n-1\right)\left(4^{n+1}+1\right)}{3.4^n}\)
Lập công thức tổng quát để tính:
\(S=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2k+1}\left(k\in N\right)\)