Những câu hỏi liên quan
NQ
Xem chi tiết
OG
Xem chi tiết
TL
8 tháng 6 2020 lúc 20:07

A B C D b H a c d

Vẽ AH _|_ CD: \(S_{ACD}=\frac{1}{2}ah\le\frac{1}{2}ab\)

\(\Rightarrow4S_{ACD}\le2ab\le a^2+b^2\) (Theo BĐT Cosi)

Tương tự \(4S_{ABC}\le c^2+d^2\)

Vậy \(4\left(S_{ACD}+S_{ABC}\right)\le a^2+b^2+c^2+d^2\) hay \(S\le\frac{a^2+b^2+c^2+d^2}{4}\)

Dấu "=" xảy ra <=> \(\Delta\)ABC vuông ở B và \(\Delta\)ADC vuông ở D

=> ABCD là hình vuông

Bình luận (0)
 Khách vãng lai đã xóa
N2
Xem chi tiết
PQ
11 tháng 12 2019 lúc 16:04

theo công thức Brahmagupta bđt \(\Leftrightarrow\)\(\sqrt{\frac{\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd}{16}-\frac{1}{4}\left(ac+bd\right)^2+\frac{1}{4}u^2v^2}\le\frac{a^2+b^2+c^2+d^2}{4}\)

Gọi u, v là 2 đường chéo của tứ giác, theo bđt Ptolemy ta coa: \(uv\le ac+bd\)\(\Leftrightarrow\)\(\frac{1}{4}u^2v^2\le\frac{1}{4}\left(ac+bd\right)^2\)

Do đó cần CM: \(\sqrt{\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd}\le a^2+b^2+c^2+d^2\)

\(\Leftrightarrow\)\(\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd\le\left(a^2+b^2+c^2+d^2\right)^2\)

\(\Leftrightarrow\)\(a^4+b^4+c^4+d^4\ge4abcd\) ( đúng theo Cosi ) 

Dấu "=" xảy ra khi ABCD là hình vuông 

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
16 tháng 10 2018 lúc 13:31

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 5 2018 lúc 8:28

Đáp án D

Trong tam giác BCD có: P là trọng tâm, N là trung điểm BC . Suy ra N , P , D thẳng hàng.

Vậy thiết diện là tam giác MND .

Xét tam giác MND , ta có 

Do đó tam giác MND cân tại D .

Gọi H là trung điểm MN suy ra DH  ⊥ MN

Diện tích tam giác 

Bình luận (0)
JP
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 7 2019 lúc 15:30

Trong tam giác BCD có: Plà trọng tâm, N là trung điểm BC .

Suy ra N; P; D  thẳng hàng.

Vậy thiết diện là tam giác MND..

Xét tam giác MND, ta có  M N = A B 2 = a ;  D M = D N = A D 3 2 = a 3

Do đó tam giác MND cân tại D.

Gọi H là trung điểm  MN  suy ra  DH và  MN vuông góc với nhau..

Diện tích tam giác  S Δ M N D = 1 2 M N . D H = 1 2 M N . D M 2 − M H 2 = a 2 11 4

Chọn C.

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2017 lúc 13:59

Đáp án B

Gọi K là trung điểm của AB, do ∆CAB và ∆DAB là hai tam giác cân chung cạnh đáy AB nên  C K ⊥ A B D K ⊥ A B ⇒ A B ⊥ C D K

Kẻ  D H ⊥ C K ta có  D H ⊥ A B C

 

Vậy  V = 1 3 S . h = 1 3 1 2 C K . A B . D H = 1 3 1 2 C K . D H . A B

Suy ra  V = 1 3 A B . S Δ K D C

Dễ thấy Δ C A B = Δ D A B ⇒ C K = D K    h a y    Δ K D C  cân tại K. Gọi I là trung điểm CD, suy ra K I ⊥ C D  và  K I = K C 2 − C I 2 = A C 2 − A K 2 − C I 2 = 4 − x 2 4 − 1 = 1 2 12 − x 2

Suy ra  S Δ K D C = 1 2 K I . C D = 1 2 12 − x 2

Vậy V = 1 6 x 12 − x 2 ≤ 1 6 . x 2 + 12 − x 2 2 = 1 . Dấu đẳng thức xảy ra khi và chỉ khi  x = 12 − x 2    h a y    x = 6

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 11 2017 lúc 16:17

Bình luận (0)