Những câu hỏi liên quan
KK
Xem chi tiết
KK
24 tháng 12 2021 lúc 20:43

giúp mik ik please

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
24 tháng 12 2021 lúc 20:09

Cá bạn ơi giúp mình với mình đang cần gấp lắm ạ 

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
AH
20 tháng 9 2023 lúc 20:23

Lời giải:

$(x-1)(x+1)=6y^2$

$\Leftrightarrow x^2-1=6y^2$

$\Rightarrow x^2=6y^2+1$ lẻ $\Rightarrow x$ lẻ.

Ta biết 1 scp khi chia cho 4 thì dư $0$ hoặc $1$. Vì $x$ là số lẻ nên $x^2$ là scp lẻ $\Rightarrow$ $x^2$ chia $4$ dư $1$

$\Rightarrow 6y^2=x^2-1\vdots 4$

$\Rightarrow y^2\vdots 2$

$\Rightarrow y$ chẵn. Mà $y$ là số nguyên tố nên $y=2$. 

Khi đó $x^2=6y^2+1=6.2^2+1=25$

$\Rightarrow x=5$ (thỏa mãn)

$

Bình luận (0)
BV
Xem chi tiết
NM
5 tháng 11 2019 lúc 16:31

Bài 1: gọi 3 số cần tìm là a;b;c

Theo đề bài a.b.c=5(a+b+c). Vế phải chia hết cho 5 nên a.b.c chia hết cho 5 => trong 3 số a;b;c có ít nhất 1 số chia hết cho 5

Giả sử c là số chia hết cho 5 và c là 1 số nguyên tố => c=5

=> a.b.5=5(a+b+5)=> a.b=a+b+5=> a.b-a=b+5 => a(b-1)=(b-1)+6 => a = 1+6/(b-1)

Vì a;b là các số nguyên => để a là số nguyên thì b-1 phải là ước của 6, do các số nguyên tố đều lớn hơn 1

=> b-1={1; 2;3;6}=> b={2;3;4;7} do b là số nguyên tố nên b=4 loại => b={2;3;7}

Thay vào biểu thức tính a => a={7; 4; 2} do a là số nguyên tố nên a=4 loại => b=3 loại

Vậy 3 số cần tìm là 2;5;7

Thử: 2.5.7=70; 5(2+5+7)=70

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
MM
18 tháng 10 2023 lúc 19:48

Sorry bạn nhưng mình từng giải bài này

Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.

Bình luận (0)
GW
Xem chi tiết
MD
12 tháng 11 2015 lúc 20:28

Thử : p = 2=> p + 2 = 4 là hợp số => p = 2 không thỏa mãn

Thử : p = 3 => p + 2 = 5 và p + 10 = 13 là số nguyên tố => p = 3

Chứng tỏ mọi p > 3 đều không chia hết cho 3 . Có 2 trường hợp

+) Nếu p = 3k + 1 => p + 2 = 3k + 3 chia hết cho 3 => p + 2 là hợp số

+) Nếu p = 3k + 2 => p + 10 = 3k + 12 chia hết cho 2 => p + 10 là hợp số

Vậy p = 3

Bình luận (0)
PB
Xem chi tiết