tìm x,y nguyên tố thỏa mãn 7x2+41=6y
các bạn giải ra giùm mik nha
Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y
giúp mik với các bạn!
cho mik cả lời giải nha!
tìm các số nguyên tố x,y thỏa mãn x^2+1=6y^2+2 các bạn ơi giúp mình với mình đang cần gấp ạ nhớ làm lời giải đầy đủ giúp mình nhé
Tìm các số nguyên tố x,y thỏa mãn x^2+1=6y^2+2.Các bạn ơi giúp mình nhé mình đang cần gấp ạ
Cá bạn ơi giúp mình với mình đang cần gấp lắm ạ
tìm các số nguyên tố x,y thỏa mãn x^2+1=6y^2+2 các bạn giúp mình với mình đang cần gấp lắm ạ
Tìm các số nguyên tố x, y thỏa mãn (x-1)(x+1)=6y^2
Lời giải:
$(x-1)(x+1)=6y^2$
$\Leftrightarrow x^2-1=6y^2$
$\Rightarrow x^2=6y^2+1$ lẻ $\Rightarrow x$ lẻ.
Ta biết 1 scp khi chia cho 4 thì dư $0$ hoặc $1$. Vì $x$ là số lẻ nên $x^2$ là scp lẻ $\Rightarrow$ $x^2$ chia $4$ dư $1$
$\Rightarrow 6y^2=x^2-1\vdots 4$
$\Rightarrow y^2\vdots 2$
$\Rightarrow y$ chẵn. Mà $y$ là số nguyên tố nên $y=2$.
Khi đó $x^2=6y^2+1=6.2^2+1=25$
$\Rightarrow x=5$ (thỏa mãn)
$
Câu 1: Tìm 3 số nguyên tố thỏa mãn tích của chúng gấp 5 lần tổng của chúng
Câu 2:a) Tìm hai số x,y thỏa mãn: x+y=xy=x:y
b) Tìm x biết: \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\) \((x\ne0)\)
Nhờ các bạn giải bài này giùm mình nhé.Càng nhanh càng tốt!
Bài 1: gọi 3 số cần tìm là a;b;c
Theo đề bài a.b.c=5(a+b+c). Vế phải chia hết cho 5 nên a.b.c chia hết cho 5 => trong 3 số a;b;c có ít nhất 1 số chia hết cho 5
Giả sử c là số chia hết cho 5 và c là 1 số nguyên tố => c=5
=> a.b.5=5(a+b+5)=> a.b=a+b+5=> a.b-a=b+5 => a(b-1)=(b-1)+6 => a = 1+6/(b-1)
Vì a;b là các số nguyên => để a là số nguyên thì b-1 phải là ước của 6, do các số nguyên tố đều lớn hơn 1
=> b-1={1; 2;3;6}=> b={2;3;4;7} do b là số nguyên tố nên b=4 loại => b={2;3;7}
Thay vào biểu thức tính a => a={7; 4; 2} do a là số nguyên tố nên a=4 loại => b=3 loại
Vậy 3 số cần tìm là 2;5;7
Thử: 2.5.7=70; 5(2+5+7)=70
Tìm các số nguyên tố x,y thỏa mãn: x^2 + 1 = 6y^2 + 2
đỐ
Sorry bạn nhưng mình từng giải bài này
Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.
Tìm P nguyên tố để các số sau là nguyên tố :
P + 2 và P+ 4
Các bạn giải thích vì sao ra kết quả giùm mik nha !
Thử : p = 2=> p + 2 = 4 là hợp số => p = 2 không thỏa mãn
Thử : p = 3 => p + 2 = 5 và p + 10 = 13 là số nguyên tố => p = 3
Chứng tỏ mọi p > 3 đều không chia hết cho 3 . Có 2 trường hợp
+) Nếu p = 3k + 1 => p + 2 = 3k + 3 chia hết cho 3 => p + 2 là hợp số
+) Nếu p = 3k + 2 => p + 10 = 3k + 12 chia hết cho 2 => p + 10 là hợp số
Vậy p = 3
tìm các số nguyên tố để x,y thỏa mãn x^2 + 1 = 6y^2+2.