Lời giải:
$(x-1)(x+1)=6y^2$
$\Leftrightarrow x^2-1=6y^2$
$\Rightarrow x^2=6y^2+1$ lẻ $\Rightarrow x$ lẻ.
Ta biết 1 scp khi chia cho 4 thì dư $0$ hoặc $1$. Vì $x$ là số lẻ nên $x^2$ là scp lẻ $\Rightarrow$ $x^2$ chia $4$ dư $1$
$\Rightarrow 6y^2=x^2-1\vdots 4$
$\Rightarrow y^2\vdots 2$
$\Rightarrow y$ chẵn. Mà $y$ là số nguyên tố nên $y=2$.
Khi đó $x^2=6y^2+1=6.2^2+1=25$
$\Rightarrow x=5$ (thỏa mãn)
$