Tính:
\(27\dfrac{51}{59}-\left(7\dfrac{51}{59}-\dfrac{1}{3}\right)\)
\(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\) giải pt
\(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(< =>\dfrac{x+1}{59}+1+\dfrac{x+3}{57}+1+\dfrac{x+5}{55}+1=\dfrac{x+7}{53}+1+\dfrac{x+9}{51}+1+\dfrac{x+11}{49}+1\)
\(< =>\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}=\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(< =>\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)=0\\ < =>x+60=0\\ < =>x=-60\)
Ta có : \(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(\Leftrightarrow\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}+3\text{=}\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}+3\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}\text{=}\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}-\dfrac{x+60}{53}-\dfrac{x+60}{51}-\dfrac{x-60}{49}\text{=}0\)
\(\Leftrightarrow\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)\text{=}0\)
\(Do\) \(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\ne0\)
\(\Leftrightarrow\left(x+60\right)\text{=}0\)
\(x\text{=}-60\)
\(Vậy...\)
A = 17\(\dfrac{2}{31}\) - ( \(\dfrac{15}{17}\) + 6\(\dfrac{2}{31}\) )
B = ( 31\(\dfrac{6}{13}\) + 5\(\dfrac{9}{41}\) ) - 36\(\dfrac{6}{12}\)
C = 27\(\dfrac{51}{59}\) - ( 7\(\dfrac{51}{59}\) - \(\dfrac{1}{3}\) )
giúp em với em cảm ơn
\(A=17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)
\(=11-\dfrac{15}{17}=\dfrac{172}{17}\)
\(B=\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{12}=36\dfrac{363}{533}-36\dfrac{6}{12}=\dfrac{193}{1066}\)
\(C=27\dfrac{51}{59}-\left(7\dfrac{51}{59}-\dfrac{1}{3}\right)=27\dfrac{51}{59}-7\dfrac{51}{59}+\dfrac{1}{3}=20+\dfrac{1}{3}=\dfrac{61}{3}\)
\(A=17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)
\(=\left(17\dfrac{2}{31}-6\dfrac{2}{31}\right)-\dfrac{15}{17}=11-\dfrac{15}{17}=\dfrac{172}{17}\)
\(B=\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{12}=36\dfrac{363}{533}-36\dfrac{1}{2}=\dfrac{193}{1066}\) (Casio :>)
\(C=27\dfrac{51}{59}-\left(7\dfrac{51}{59}-\dfrac{1}{3}\right)=27\dfrac{51}{59}-7\dfrac{51}{59}+\dfrac{1}{3}\)
\(=20+\dfrac{1}{3}=\dfrac{61}{3}\)
Giải các phương trình sau :
a, \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
b, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
c, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
a, \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
\(\Leftrightarrow\left(\dfrac{59-x}{49}+1\right)+\left(\dfrac{57-x}{43}+1\right)+\left(\dfrac{55-x}{45}+1\right)+\left(\dfrac{53-x}{47}+1\right)+\left(\dfrac{51-x}{49}+1\right)=0\)
\(\Leftrightarrow\dfrac{100-x}{45}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{100-x}{49}=0\)
\(\Leftrightarrow\left(100-x\right).\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)=0\)
Mà \(\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)\ne0\)
\(\Rightarrow100-x=0\)
\(\Rightarrow x=100\)
Vậy \(S=\left\{100\right\}\)
b, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)
\(\Leftrightarrow6x^2-5x+3=-7x+6x^2\)
\(\Leftrightarrow6x^2-5x+3+7x-6x^2=0\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow2x=-3\)
\(\Leftrightarrow x=\dfrac{-3}{2}\)
Vậy \(S=\left\{\dfrac{-3}{2}\right\}\)
c,\(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
\(\Leftrightarrow\dfrac{10x-40}{20}-\dfrac{6+4x}{20}=\dfrac{20x}{20}+\dfrac{4-4x}{20}\)
\(\Leftrightarrow\dfrac{6x-46}{20}=\dfrac{16x+4}{20}\)
\(\Leftrightarrow6x-46=16x+4\)
\(\Leftrightarrow6x-46-16x-4=0\)
\(\Leftrightarrow-10x-50=0\)
\(\Leftrightarrow-10x=50\)
\(\Leftrightarrow x=-5\)
Vậy \(S=\left\{-5\right\}\)
Câu 1: Thực hiện phép tính
a, \(\dfrac{7}{9}-\dfrac{16}{9}\)
b, \(\dfrac{2}{-15}+\dfrac{7}{10}\)
c, \(\left(4\dfrac{2}{3}-4\dfrac{3}{4}\right):\dfrac{-5}{12}-\dfrac{4}{5}\)
d, \(\dfrac{-141}{157}.\dfrac{23}{59}-\dfrac{141}{157}.\dfrac{36}{59}+\dfrac{16}{-157}\)
a. 7/9 - 16/9 = -9/9 = -1
b. 2/-15 + 7/10 = 17/30
c. (4 2/3 - 4 3/4) : -5/12 - 4/5
= (14/3 - 19/4) : (-5/12) - 4/5
= -1/12 : (-5/12) - 4/5
= 1/5 - 4/5
= -3/5
Tính:
a) \(\dfrac{17}{8}:\left(\dfrac{27}{8}+\dfrac{11}{2}\right);\)
b) \(\dfrac{28}{15}\cdot\dfrac{1}{4^2}.3+\left(\dfrac{8}{15}-\dfrac{69}{60}\cdot\dfrac{5}{23}\right):\dfrac{51}{54}.\)
\(a.\)
\(\dfrac{17}{8}:\left(\dfrac{27}{8}+\dfrac{11}{2}\right)\)
\(=\dfrac{17}{8}:\left(\dfrac{27+44}{8}\right)=\dfrac{17}{8}:\dfrac{71}{8}=\dfrac{17}{8}\cdot\dfrac{8}{71}=\dfrac{17}{71}\)
\(b.\)
\(\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\left(\dfrac{8}{15}-\dfrac{69}{60}\cdot\dfrac{5}{23}\right):\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\left(\dfrac{8}{15}-\dfrac{1}{4}\right):\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\left(\dfrac{8\cdot4-15}{60}\right):\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4^2}\cdot3+\dfrac{17}{60}:\dfrac{51}{54}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{16}\cdot3+\dfrac{17}{60}\cdot\dfrac{54}{51}\)
\(=\dfrac{7}{20}+\dfrac{3}{10}\)
\(=\dfrac{7+3\cdot2}{20}=\dfrac{13}{20}\)
Chứng minh :
A =\(\dfrac{1}{2}+\dfrac{1}{33}+\dfrac{1}{34}+\dfrac{1}{35}+\dfrac{1}{51}+\dfrac{1}{53}+\dfrac{1}{55}+\dfrac{1}{57}+\dfrac{1}{59}\)<\(\dfrac{7}{10}\)
Lời giải:
\(A=\frac{1}{2}+\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}\)
Ta có:
\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}=\frac{3}{30}=\frac{1}{10}\)
\(\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}=\frac{5}{50}=\frac{1}{10}\)
Cộng theo vế:
\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{2}{10}=\frac{1}{5}\)
Suy ra \(A< \frac{1}{2}+\frac{1}{5}=\frac{7}{10}\)
Ta có đpcm.
Tìm x biết
a) \(2.3^x-405=3^{x-1}\)
b) \(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
c) \(\left|3x-5\right|=\left|\dfrac{1}{2}x+3\right|\)
d) \(\left(\dfrac{1}{81}\right)^x.27^{2x}=\left(-9\right)^4\)
a, Theo đề ta có:
\(2.3^x-405=3^{x-1}\)
=> \(2.3^x-405=3^x:3\)
=> \(405=(2.3^x)-(3^x:3)\)
=>\(405=(2.3^x)-(3^x.\dfrac{1}{3})\)
=> \(405=3^x(2-\dfrac{1}{3})\)
=>\(405=3^x(\dfrac{6}{3}-\dfrac{1}{3})\)
=> \(405=3^x.\dfrac{5}{3}\)
=> \(3^x=405:\dfrac{5}{3}\)
=>\(3^x=405.\dfrac{3}{5}\)
=> \(3^x=81.3\)
=> \(3^x=243\)
=> \(3^x=3^5\)
=> x=5
Vậy:..............................
a)\(\dfrac{\dfrac{2}{3}-}{\dfrac{8}{3}-}\dfrac{\dfrac{2}{5}+}{\dfrac{8}{5}+}\dfrac{\dfrac{2}{7}-}{\dfrac{8}{7}-}\dfrac{\dfrac{2}{9}+}{\dfrac{8}{9}+}\dfrac{\dfrac{2}{11}}{\dfrac{8}{11}}\)
b)\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{50}-1\right)\left(\dfrac{1}{51}-1\right)\)
Lời giải:
a)
\(\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{7}-\frac{2}{9}+\frac{2}{11}}{\frac{8}{3}-\frac{8}{5}+\frac{8}{7}-\frac{8}{9}+\frac{8}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}{8\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}\) \(=\frac{2}{8}=\frac{1}{4}\)
b)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{50}-1\right)\left(\frac{1}{51}-1\right)\)
\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}....\frac{1-50}{50}.\frac{1-51}{2}=\frac{(-1)(-2)(-3)...(-49)(-50)}{2.3.4....50.51}\)
\(=\frac{(-1)^{50}.1.2.3....49.50}{2.3.4...50.51}=\frac{1}{51}\)
\(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
giải phương trình trên