Những câu hỏi liên quan
H24
Xem chi tiết
IY
18 tháng 3 2018 lúc 8:22

ta có: \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)

\(\frac{c}{d}=k\Rightarrow c=dk\)

thay vào \(\left(a+2c\right).\left(b+d\right)=\left(bk+2dk\right).\left(b+d\right)=k.\left(b+2d\right).\left(b+d\right)\)

\(\left(a+c\right).\left(b+2d\right)=\left(bk+dk\right).\left(b+2d\right)=k.\left(b+d\right).\left(b+2d\right)\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(=k.\left(b+2d\right).\left(b+d\right)\right)\)( đ p c m)

CHÚC BN HỌC TỐT!!!!!!!!

Bình luận (0)
H24
18 tháng 3 2018 lúc 8:25

Ta có:

\(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)

\(ab+ad+2cb+2cd=ab+2ad+cb+2cd\)

\(cb=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)

Bình luận (0)
MN
Xem chi tiết
VT
26 tháng 12 2019 lúc 18:01

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).

Có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
NT
18 tháng 2 2022 lúc 21:54

gianroi

Bình luận (0)
DH
Xem chi tiết
AK
8 tháng 5 2018 lúc 18:55

a )    \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{b}{d}=\frac{2a}{2c}=\frac{2a+b}{2c+d}=\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\left(đpcm\right)\)

b )  \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

\(\Rightarrow\left(a+2c\right)\left(b-d\right)=\left(a-c\right)\left(b+2d\right)\left(đpcm\right)\)

Chúc bạn học tốt !!! 

Bình luận (0)
YT
8 tháng 5 2018 lúc 18:58

\(\frac{a}{c}=\frac{b}{d}\)

suy ra\(\frac{2a}{2c}=\frac{b}{d}=\frac{2a+b}{2c+d}\left(1\right)\)

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\left(2\right)\)

\(tu\left(1\right)\left(2\right)suyra\)\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

Bình luận (0)
H24
8 tháng 5 2018 lúc 19:07

a) \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Áp dụng tính chất dãy tỉ số = nhau, ta có:

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\left(1\right)\)

\(\text{Chứng minh tương tự: }\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\left(2\right)\)

\(\text{Từ (1) và (2): }\Rightarrow\frac{a}{b}=\frac{c}{d}\left(Đ\text{PCM}\right)\)

b) \(\left(a+2c\right)\left(b-d\right)=\left(a-c\right)\left(b+2d\right)\)

\(\Rightarrow ab+ad+2cd=ab+2da+cd+2dc\)

\(\Rightarrow ad+2cb=2da+cb\)

\(\Rightarrow ab=cd\)

Bình luận (0)
HD
Xem chi tiết
LH
23 tháng 7 2019 lúc 12:47

câu hỏi là j vậy bạn ? hum

Bình luận (1)
VT
23 tháng 7 2019 lúc 17:40

Đề bài bị thiếu rồi bạn ơi. Hoàng Hữu Duy

Bình luận (0)
TM
Xem chi tiết
NM
13 tháng 12 2017 lúc 13:47

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}\Rightarrow\frac{a+2c}{b+2d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\Rightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)

Bình luận (0)
HT
Xem chi tiết
NT
23 tháng 10 2016 lúc 12:44

Giải:

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\)

\(\Rightarrow\frac{a}{b}=\frac{a+2c}{b+2d}\left(đpcm\right)\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\) (1)

\(\frac{a+c-b-d}{b+d}=\frac{bk+dk-b-d}{b+d}=\frac{\left(bk-b\right)+\left(dk-d\right)}{b+d}=\frac{\left[b\left(k-1\right)+d\left(k-1\right)\right]}{b+d}=\frac{k-1.\left(b+d\right)}{b+d}=k-1\) (2)

Từ (1) và (2) suy ra \(\frac{a-b}{b}=\frac{a+c-b-d}{b+d}\left(đpcm\right)\)

Bình luận (0)
GS
Xem chi tiết
TN
7 tháng 4 2017 lúc 20:25

\(\frac{a}{b}=\frac{c}{d}\\ =>ad=bc\)

(a+2c)(b+d)=a(b+d)+2c(b+d)

=ab+ad+2bc+2cd

=ab+ad+2ad+2cd   (bc=ad nên thay vào)

=ab+3ad+2cd   (1)

tương tự

(a+c)(b+2d)=ab+2ad+cb+2cd

=ab+3ad+2cd      (2)

Từ (1) và (2)

=>(a+2c)(b+d)=(a+c)(b+2d)

Bình luận (0)
QT
Xem chi tiết
H24
17 tháng 10 2016 lúc 20:51

sao ko có tỉ lệ thức nào để cm vậy

Bình luận (0)
HN
Xem chi tiết
VT
24 tháng 7 2019 lúc 10:06

a) Áp dụng tính chất tỉ lệ thức ta được:

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) \(\left(đpcm\right)\).

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!

Bình luận (0)