Những câu hỏi liên quan
YA
Xem chi tiết
NT
1 tháng 2 2017 lúc 17:04

a) Ta có: \(\left(2x+\frac{1}{3}\right)^4\ge0\)

\(\Rightarrow A=\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

Vậy \(MIN_A=-1\) khi \(x=\frac{-1}{6}\)

b) Ta có: \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\) ( do \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\) )

\(\Rightarrow B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)

Vậy \(MAX_B=3\) khi \(x=\frac{3}{10}\)

Bình luận (0)
TT
Xem chi tiết
HQ
Xem chi tiết
NA
27 tháng 7 2017 lúc 16:43

B = 3 | 2x + 4 | - 15

Vì | 2x + 4 | \(\ge0\forall x\)

=> 3 | 2x + 4 | \(\ge0\forall x\)

=> 3 | 2x + 4 | - 15 \(\ge-15\forall x\)

=> B \(\ge-15\forall x\)

=> B = - 15 <=> | 2x + 4 | = 0

                  <=> 2x + 4 = 0

                  <=> 2x = - 4

                  <=> x = - 2

Vậy B min = - 15 khi x = - 2

A = - | x - 6 | + 24

Vì | x - 6 | \(\ge0\forall x\)

=> - | x - 6 |  \(\le0\forall x\)

=> - | x - 6 | + 24 \(\le24\forall x\)

=> A \(\le24\forall x\)

=> A = 24 <=> | x - 6 | = 0

                <=> x - 6 = 0 

                <=> x = 6

Vậy A max = 24 khi x = 6

Bình luận (0)
AQ
27 tháng 7 2017 lúc 16:52

Ta có \(\text{3|2x+4|}\ge0\Rightarrow\text{3|2x+4|}-15\ge15\)

Dấu "=" xảy ra khi \(\text{3|2x+4|=0\Rightarrow2}x+4=0\Rightarrow2x=-4\Rightarrow x=-2\)

Bình luận (0)
HQ
27 tháng 7 2017 lúc 17:03

thế 3 để đi đâu hả bạn

Bình luận (0)
TT
Xem chi tiết
EC
6 tháng 9 2016 lúc 21:10

Câu a hình như sai đề mk sửa nha

a)\(A=\left(2x+\frac{1}{3}\right)^4-1\)

         Vì \(\left(2x+\frac{1}{3}\right)^4\ge0\)

      Suy ra:\(\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

                   Dấu = xảy ra khi \(2x+\frac{1}{3}=0\)

                                               \(2x=-\frac{1}{3}\)

                                                \(x=-\frac{1}{6}\)

Vậy Min A=-1 khi \(x=-\frac{1}{6}\)

Bình luận (2)
EC
6 tháng 9 2016 lúc 21:13

b)\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)

    \(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)

           Vì \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)

                     Suy ra:\(3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le3\)

Dấu = xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\)

                            \(\frac{4}{9}x=\frac{2}{15}\)

                            \(x=\frac{3}{10}\)

     Vậy Max B=3 khi \(x=\frac{3}{10}\)

Bình luận (1)
Xem chi tiết
RK
Xem chi tiết
CA
23 tháng 12 2015 lúc 22:37

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

Bình luận (0)
Xem chi tiết
DK
Xem chi tiết
NM
8 tháng 8 2021 lúc 9:26

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

Bình luận (1)
TL
Xem chi tiết

giai di em

Bình luận (0)