Tìm
a) Min của A=(2x+1/3)4 -1
b) Max của B= -(4/9 .x -2/15)6 +3
a) Tìm Min của biểu thức A = ( 2x + 1/3)^4 - 1
b) Tìm Max của biểu thức B = -(4/9x - 2/15 ) ^ 6 + 3
a) Ta có: \(\left(2x+\frac{1}{3}\right)^4\ge0\)
\(\Rightarrow A=\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Vậy \(MIN_A=-1\) khi \(x=\frac{-1}{6}\)
b) Ta có: \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\) ( do \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\) )
\(\Rightarrow B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)
Vậy \(MAX_B=3\) khi \(x=\frac{3}{10}\)
tìm max min
a) ( 2x + 1/3)^4 - 1
b) - (4/9x - 2/15) ^6 +3
tìm min B=3|2x+4|-15
tìm max A=-|x-6|+24
B = 3 | 2x + 4 | - 15
Vì | 2x + 4 | \(\ge0\forall x\)
=> 3 | 2x + 4 | \(\ge0\forall x\)
=> 3 | 2x + 4 | - 15 \(\ge-15\forall x\)
=> B \(\ge-15\forall x\)
=> B = - 15 <=> | 2x + 4 | = 0
<=> 2x + 4 = 0
<=> 2x = - 4
<=> x = - 2
Vậy B min = - 15 khi x = - 2
A = - | x - 6 | + 24
Vì | x - 6 | \(\ge0\forall x\)
=> - | x - 6 | \(\le0\forall x\)
=> - | x - 6 | + 24 \(\le24\forall x\)
=> A \(\le24\forall x\)
=> A = 24 <=> | x - 6 | = 0
<=> x - 6 = 0
<=> x = 6
Vậy A max = 24 khi x = 6
Ta có \(\text{3|2x+4|}\ge0\Rightarrow\text{3|2x+4|}-15\ge15\)
Dấu "=" xảy ra khi \(\text{3|2x+4|=0\Rightarrow2}x+4=0\Rightarrow2x=-4\Rightarrow x=-2\)
a. Tìm Min A = \(\left(2x+\frac{1}{3}\right)4-1\)
b. Tìm Max B = \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Giúp Thảo nhé !
Câu a hình như sai đề mk sửa nha
a)\(A=\left(2x+\frac{1}{3}\right)^4-1\)
Vì \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Suy ra:\(\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu = xảy ra khi \(2x+\frac{1}{3}=0\)
\(2x=-\frac{1}{3}\)
\(x=-\frac{1}{6}\)
Vậy Min A=-1 khi \(x=-\frac{1}{6}\)
b)\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)
Suy ra:\(3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le3\)
Dấu = xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\)
\(\frac{4}{9}x=\frac{2}{15}\)
\(x=\frac{3}{10}\)
Vậy Max B=3 khi \(x=\frac{3}{10}\)
Tìm giá trị nhỏ nhất(Min) hoặc lớn nhất(Max) của:
a) \(A=3,7+\left|4,3-x\right|\)
b)\(B=\left(2x+\frac{1}{3}\right)^4-1\)
c)\(C=0,5-\left|x-4\right|\)
d)\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Tìm:
Min và Max của \(x^2+1\over x^2-x+1\)Min và Max của x+y. Cho x; y thuộc R và x2+y2=1Min của \(\sqrt{x^2+2x+1} + \sqrt{x^2-2x+1}\)Max của \(\sqrt{x-2} + \sqrt{3-x}\)Min của 5x2-12xy+9x2-4x+4Max của 15-10x-10x2+24xy-16y2Min của x(x+1)(x+2)(x+3)Min của x2-6x3+10x2-6x+9P/s: Ai làm được bài nào thì giúp tớ nhé.
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
1.Tìm Min A=-4+Giá trị tuyệt đối của 1-2x
2.Tìm Max B=-1/2 -GTTĐ của 3+1
3. Tìm Min C=GTTĐ của (x-1)+GTTĐ của (x-2 )+5
Bài 1: Tìm min max của các bthuc sau
a,A=\(\sqrt{x-2}+\sqrt{6-x}\)
b,B= \(\sqrt{2x+3}+\sqrt{13-2x}\)
c.,C=\(\sqrt{3x+9}+\sqrt{7-3x}\)
a) \(A=\sqrt{x-2}+\sqrt{6-x}\)
\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)
Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)
Mà A không âm \(\Leftrightarrow A\ge2\)
Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Áp dụng BĐT Bunhiacopxky:
\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)
\(\Leftrightarrow A\le\sqrt{8}\)
Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)
Mấy bài còn lại y chang nha
Tick hộ nha
giải hộ em
a,Tìm min, max: 4x-16 căn x+4y-22 căn y-4 căn xy+36
b, tìm max :B= 6 cẵn+3/2x+4
c, Tìm Min : C=2/1-x+1/x